Как то вечером девочка захотела узнать какой длины будет тень от дерева во дворе длина тени оказалас равна 3,1. Девочка знает что высота дерева состовляет 1,9м. Чему будет равна длинна тени девочки, если её рост равен 128 см.
определить а - ? т (1,2) - ? т (2,3) - ? решение. выберем координатную ось x в направлении движения грузов м2 и м3. неподвижный блок только меняет направление силы, поэтому можно считать, что и груз м1 движется в положительном направлении координатной оси. рассмотрим силы, действующие на тела (чертеж простенький, выполните сами, ! ) на груз м3 действует сила тяжести м3*g, направленная вниз и сила натяжения нити т (2,3), направленная в противоположную сторону. на груз м2 действуют силы: сила тяжести м2*g, направленная вниз, сила натяжения т (3, равная по модулю силе т (2,3), но противоположно направленная (3-й закон ньютона) , эти силы направлены вдоль нити, вдоль оси х, сила со стороны плоскости n2, перпендикулярная поверхности, сила натяжения т (2,1), равная силе т (1,2), направленная вдоль координатной оси в направлении, противоположном движению. на груз м1 действуют силы: тяжести м1*g, n1 и сила натяжения нити т (2,1) равная по модулю силе т (1,2), но противоположно направленная. изображая силы, не забудьте над их обозначением начертить стрелочки (векторы! ) . координатную ост у проводим перпендикулярно оси х. найдем проекции сил на координатные оси х: м1*g sina; м2*g sina ; (вдоль оси х против движения) , на ось у: м1*g cosa; м2*g cosa; силы, действующие со стороны плоскости на тела м1 и м2 равны проекциям силы тяжести на ось у. n1 = м1*g cosa; n2 = м2*g cosa; на тела м2 и м3 действуют и силы трения, направленные против движения f2 = μ m2*g cosa ; f3 = μ m3*g cosa; уравнения движения грузов: а*м3 = м3g – t(2,3) (3); a*m2 = t(3,2) – т (1,2)- м2 (sina + μ *g cosa) (2); а*м1 = т (2,1) – m1( sina + μ *g cosa); (1). сложим эти три уравнения почленно (отдельно левые части, отдельно – правые) . учтем, что т (1,2) = - т (2,1); т (2,3) = - т (3,2); получим: а*м1 +а*м2 + а*м3 = м3*g - μ ( m1 + m2)*g (sina a + μ cosa) : а (м1 + м2 + м3) = g(м3 - (m2 + m1) (sina + μ cosa)); а = g(м3 - (m2 + m1)(sina + μ cosa) /(м1+м2+м3); вычислим (размерность не подставляю, чтобы вас не «запутать» , а вы – подставьте, ! ) . а = 10*(5 – (3 + 4)(0,5 +0,2*0,866))/ (3 + 4 + 5) = 0,25 ( м/с кв) ; силу натяжения т (1) = т (1,2) = т (2,1) находим из уравнения (1): а*м1 = т (1) - μ m1*g (sima + μ cosa); т (1) = а*м1 + μ m1*g (sina + cosa); т (1) = м1(а + μ g (sina + cosa); т (1) = 3*(0,25 + 0,2* 10*(0,25 + 0,2*0,866) = 6 (н) округлено. силу натяжения т (2) = т (3,2) = т (2,3) находим из уравнения (3): а*м3 = м3g – t(2) (3); т (2) = м3 (g – a); т (2) = 5* (10 – 0,25) = 48,75 = 49 (н) округлено. успеха вам и «питерки» !
e=h\nu= \frac{hc}{\lambda} \rightarrow \nu= \frac{e}{h}; \lambda= \frac{hc}{e} \nu= \frac{0.94}{4.136*10^{-15}} =2.27*10^{14}lambda= \frac{4.136*10^{-15}*3*10^8}{0.94} =1.32*10^{-6}
б)
e=\delta e=e_n-e_m= \frac{m_e*e^4}{8*h^2*\varepsilon^2 _0} (\frac{1}{m^2}- \frac{1}{n^2})=h\nu
\rightarrow \nu=\frac{m_e*e^4}{8*h^3*\varepsilon^2 _0}(\frac{1}{m^2}- \frac{1}{n^2})
\nu= r\acute ( \frac{1}{m^2}- \frac{1}{n^2})\rightarrow \frac{1}{m^2}- \frac{1}{n^2}= \frac{\nu}{r\acute{}} = \frac{2.27*10^{14}}{3.29*10^{15}} =0,069
в предыдущем пункте мы получили то, что длина волны составляет ~1300 нм, отсюда можно сделать вывод, что это серия пашена, значит m=3
. дано: m1 = 3 кг; m2 = 4 кг; m3 = 5 кг; α = 30 град; μ = 0,2.
определить а - ? т (1,2) - ? т (2,3) - ? решение. выберем координатную ось x в направлении движения грузов м2 и м3. неподвижный блок только меняет направление силы, поэтому можно считать, что и груз м1 движется в положительном направлении координатной оси. рассмотрим силы, действующие на тела (чертеж простенький, выполните сами, ! ) на груз м3 действует сила тяжести м3*g, направленная вниз и сила натяжения нити т (2,3), направленная в противоположную сторону. на груз м2 действуют силы: сила тяжести м2*g, направленная вниз, сила натяжения т (3, равная по модулю силе т (2,3), но противоположно направленная (3-й закон ньютона) , эти силы направлены вдоль нити, вдоль оси х, сила со стороны плоскости n2, перпендикулярная поверхности, сила натяжения т (2,1), равная силе т (1,2), направленная вдоль координатной оси в направлении, противоположном движению. на груз м1 действуют силы: тяжести м1*g, n1 и сила натяжения нити т (2,1) равная по модулю силе т (1,2), но противоположно направленная. изображая силы, не забудьте над их обозначением начертить стрелочки (векторы! ) . координатную ост у проводим перпендикулярно оси х. найдем проекции сил на координатные оси х: м1*g sina; м2*g sina ; (вдоль оси х против движения) , на ось у: м1*g cosa; м2*g cosa; силы, действующие со стороны плоскости на тела м1 и м2 равны проекциям силы тяжести на ось у. n1 = м1*g cosa; n2 = м2*g cosa; на тела м2 и м3 действуют и силы трения, направленные против движения f2 = μ m2*g cosa ; f3 = μ m3*g cosa; уравнения движения грузов: а*м3 = м3g – t(2,3) (3); a*m2 = t(3,2) – т (1,2)- м2 (sina + μ *g cosa) (2); а*м1 = т (2,1) – m1( sina + μ *g cosa); (1). сложим эти три уравнения почленно (отдельно левые части, отдельно – правые) . учтем, что т (1,2) = - т (2,1); т (2,3) = - т (3,2); получим: а*м1 +а*м2 + а*м3 = м3*g - μ ( m1 + m2)*g (sina a + μ cosa) : а (м1 + м2 + м3) = g(м3 - (m2 + m1) (sina + μ cosa)); а = g(м3 - (m2 + m1)(sina + μ cosa) /(м1+м2+м3); вычислим (размерность не подставляю, чтобы вас не «запутать» , а вы – подставьте, ! ) . а = 10*(5 – (3 + 4)(0,5 +0,2*0,866))/ (3 + 4 + 5) = 0,25 ( м/с кв) ; силу натяжения т (1) = т (1,2) = т (2,1) находим из уравнения (1): а*м1 = т (1) - μ m1*g (sima + μ cosa); т (1) = а*м1 + μ m1*g (sina + cosa); т (1) = м1(а + μ g (sina + cosa); т (1) = 3*(0,25 + 0,2* 10*(0,25 + 0,2*0,866) = 6 (н) округлено. силу натяжения т (2) = т (3,2) = т (2,3) находим из уравнения (3): а*м3 = м3g – t(2) (3); т (2) = м3 (g – a); т (2) = 5* (10 – 0,25) = 48,75 = 49 (н) округлено. успеха вам и «питерки» !