Как начился процесс этой задачи? Груз D (m = 1,2 кг), пройдя без начальной скорости по наклонной плоскости (α = 30°) расстояние s = 0,2 м, ударяется о недеформированную пружину, коэффициент жесткости которой с = 4,8 Н/см. В этот же момент (t = 0) точка В (нижний конец пружины) начинает совершать вдоль наклонной плоскости движение по закону ξ = 0,03sin12t (м) (ось ξ направлена вдоль наклонной плоскости вниз)
для второго тела x2=v0t+0.5at^2;
Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a;
Находим расстояния, пройденные телами за это время t1;
x1=-v0*v0/a+0.5a*v0^2/a^2;
x1=-v0^2/a+0.5v0^2/a;
x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2;
x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a);
x2/x1=3. Второе тело путь в три раза больше, чем первое.