Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$
1) Кладём линейку на карандаш как сказано в задании.
2) Возьмём четыре монеты по 1 рублю.
3) Кладём 1 монету на 4 см с одной стороны от точки опоры.
4) Кладём стопку из трёх монет на 1 см от точки опоры.
5) Если что-то где-то перевешивает чуть-чуть сдвигаем.
6) Собственно измеряем длину плеч, т.е. расстояние от точки опоры до монет с обеих сторон.
7) Правило рычага - рычаг находится в равновесии, когда силы, действующие на него обратно пропорциональны плечам этой силы.
F1/F2 = l2/l1
Подставляем числа и всё))
И я не вылитый художник ;)
Подробнее - на -
Объяснение: