Електрон із стану спокою починає рухатись в однорідному полі напруженістю 2 В/м. На якій відстані його швидкість зросте до 150 км/с? Маса електрона 9,1 • 10^-31 кг, а модуль його заряду рівний 1,6 • 10^-19 Кл.
Поскольку кинетической энергией обладает механическая система, находящаяся в зависимости от скоростей, на которых движутся различные её точки, то она бывает поступательного и вращательного типа. Для измерения энергии используется единица Джоуль (Дж) в системе СИ.Давайте рассмотрим то, как найти энергию. Формула кинетической энергии:Ex= mv²/2,Ek – это кинетическая энергия, измеряемая в Джоулях;m – масса тела (килограммы);v–скорость (метр/секунду).Для определения того, как найти кинетическую энергию для твердого тела, выводят сумму кинетической энергии поступательного и вращательного движения.Вычисленная таким образом кинетическая энергия тела, которое движется на определенной скорости, демонстрирует работу, которую должна выполнить сила, воздействующая на тело в состоянии покоя, чтобы придать ему скорость.
Уникальность свойств фуллеренов и их особые взаимодействия с другими атомами и молекулами [1], послужили обоснованием для материаловедческих исследований, в частности, фуллеренов в металлах. Конденсированные в вакууме пленки фуллеритов, как правило, имеют гетерофазную структуру (ГЦК и ГПУ). В фуллеритовых пленках, допированных металлами, наблюдается существенная модификация наноструктуры, электронных и колебательных спектров, которая зависит от содержания металла и условий термообработки. При легировании фуллеритов С60 металлами за счет ионизации атомов и гибридизации электронных состояний происходит расширение и перекрытие энергетических зон, приписываемых молекулярным орбиталям фуллеренов [2]. Такое изменение электронной структуры приводит к возрастанию роли кулоновского взаимодействия, а также к понижению икосаэдрической симметрии фуллеренов [3]. В представленной работе исследованы фазовый и элементный состав, структура, электрические, механические и трибологические свойства пленок титан-фуллерен с разным соотношением атомов металла и молекул фуллерена С60. Пленки получали в вакууме на установке «ВУП-4» конденсацией совмещенных атомно-молекулярных потоков при давлении остаточных паров воздуха 1⋅10-4 Па. Поскольку фуллерены начинают сублимировать при температурах менее 700 К, а температура испарения титана выше 2000 К, то для получения титан-фуллереновых плёнок использовались два испарителя. Разогрев испарителей обеспечивался пропусканием электрического тока. В качестве испарителей для титана использовались молибденовые «лодочки», для С60 — танталовые. Получение пленок с различным содержанием фуллеренов обеспечивалось различными плотностями атомно-кластерных потоков компонентов, что в свою очередь достигалось регулированием температуры испарителей и изменением их расположения относительно подложки. Реальная концентрация фуллеренов в титан - фуллереновых пленках определялась методом рентгеновского микроанализа по интенсивности характеристического рентгеновского излучения Кα-линий атомов титана и углерода в пленках заданной толщины. В качестве исходного материала использовались титан марки ВТ1-0 и фуллеритовый порошок С60 чистоты 99,9 %. Фазовый состав пленок контролировался на рентгеновском дифрактометре «ДРОН-3.0» в медном Кα-излучении. Структура пленок исследовалась с сканирующего электронного микроскопа LEO 1420VP. Механические свойства определялись методом наноиндентирования пирамидой Берковича на нанотвердомере Nano Indenter II, трибологические - с трибометра ТАУ-1, а адгезионные свойства – на разрывной машине РМ-1М, аналогично [3, 4]. Измерение электрических характеристик производилось резистометрическими методами с использованием низкоомного и высокоомного патенциометров. Титан-фуллереновые пленки проявляют повышенную прочность, их электросопротивление существенно изменяется при изменении соотношения числа атомов титана к числу молекул фуллерена, что связывается с возникновением значительных механических напряжений и искажений решет