Два резистора включены параллельно в цепь постоянного тока. Чему равно отношение количества теплоты, выделяющегося на первом резисторе (20 Ом) к количеству теплоты, выделяющемся на втором резисторе (30 Ом) за одинаковое время?
Обозначим угол наклона как x. Разложим силу тяжести на нормальную N (прижимает тело к поверхности) и тангенциальную T (толкает тело вдоль поверхности) составляющие. N=mg cos(x); T=mg sin(x); Сила трения скольжения равна f=kN, где k - коэффициент трения. Если тело движется без ускорение, значит сумма сил, действующих на него, равна нулю. Нас интересуют только силы, направленные вдоль поверхности. mg*sin(x)-kmg*cos(x)=0; разделим уравнение на mg*cos(x); sin(x)/cos(x)-k=0; tg(x)=k; x=arctg(k); x=arctg(0.7); x=0.6107 рад. x=35 градусов (округлённо)
Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.
Разложим силу тяжести на нормальную N (прижимает тело к поверхности) и тангенциальную T (толкает тело вдоль поверхности) составляющие.
N=mg cos(x);
T=mg sin(x);
Сила трения скольжения равна f=kN, где k - коэффициент трения.
Если тело движется без ускорение, значит сумма сил, действующих на него, равна нулю. Нас интересуют только силы, направленные вдоль поверхности.
mg*sin(x)-kmg*cos(x)=0; разделим уравнение на mg*cos(x);
sin(x)/cos(x)-k=0;
tg(x)=k;
x=arctg(k);
x=arctg(0.7);
x=0.6107 рад.
x=35 градусов (округлённо)
m = 30 кг.
g = 10 м/с2.
а = 0 м/с2.
∠α = 30°.
μ = 0,5.
Fт - ?
Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.