дві металеві пластини помістили на шляху радіоактивного випромінювання в магнітному полі так що на одну пластинку потрапляють альфа частинки, а на іншу - бета частинки. Що покаже гальванометр,якщо його з'єднати з пластинами?
Строение и характеристики магнитного поля Земли[править | править вики-текст]
На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.
По мере удаления от поверхности Земли усиливается воздействие солнечного ветра: со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».
Плазмосфера[править | править вики-текст]
Заметное влияние на магнитное поле на поверхности Земли оказывают токи в ионосфере. Это область верхней атмосферы, простирающаяся от высот порядка 100 км и выше. Содержит большое количество ионов. Плазма удерживается магнитным полем Земли, но её состояние определяется взаимодействием магнитного поля Земли с солнечным ветром, чем и объясняется связь магнитных бурь на Земле с солнечными вспышками.
Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Вектор магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.
Средняя напряжённость поля на поверхности Земли составляет около 0,5 Э (40 А/м) и сильно зависит от географического положения.[2] Напряжённость магнитного поля на магнитном экваторе — около 0,34 Э, у магнитных полюсов — около 0,66 Э. В некоторых районах (в так называемых районах магнитных аномалий) напряжённость резко возрастает. В районе Курской магнитной аномалии она достигает 2 Э.
Дипольный магнитный момент Земли на 1995 год составлял 7,812·1025 Гс·см³ (или 7,812·1022 А·м²), уменьшаясь в среднем за последние десятилетия на 0,004·1025 Гс·см³ или на 1/4000 в год.
Распространена аппроксимация магнитного поля Земли в виде ряда по гармоникам — ряд Гаусса.
Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца[3].
На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.
По мере удаления от поверхности Земли усиливается воздействие солнечного ветра: со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».
Плазмосфера[править | править вики-текст]Заметное влияние на магнитное поле на поверхности Земли оказывают токи в ионосфере. Это область верхней атмосферы, простирающаяся от высот порядка 100 км и выше. Содержит большое количество ионов. Плазма удерживается магнитным полем Земли, но её состояние определяется взаимодействием магнитного поля Земли с солнечным ветром, чем и объясняется связь магнитных бурь на Земле с солнечными вспышками.
Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Вектор магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.
Средняя напряжённость поля на поверхности Земли составляет около 0,5 Э (40 А/м) и сильно зависит от географического положения.[2] Напряжённость магнитного поля на магнитном экваторе — около 0,34 Э, у магнитных полюсов — около 0,66 Э. В некоторых районах (в так называемых районах магнитных аномалий) напряжённость резко возрастает. В районе Курской магнитной аномалии она достигает 2 Э.
Дипольный магнитный момент Земли на 1995 год составлял 7,812·1025 Гс·см³ (или 7,812·1022 А·м²), уменьшаясь в среднем за последние десятилетия на 0,004·1025 Гс·см³ или на 1/4000 в год.
Распространена аппроксимация магнитного поля Земли в виде ряда по гармоникам — ряд Гаусса.
Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца[3].
дано
Т=0 С
T1=100 C
L= 2.3*10^6 Дж/кг
C1=4200 Дж/кг*С
С2=2100 Дж/кг*С
λ = 3.4*10^5 Дж/кг
m2=150 г - можно не переводить в кг - на вычисления не влияет
Т2= -20 С
m1 -?
решение
по условию -лед полностью растаял-конечная температура процесса Т=0 С
Q1 =C2*m2*(T-T2) - лед нагревается - поглощает тепло
Q2 =λ*m2 - лед плавится - поглощает тепло
Q3 = - Lm1 - пар конденсируется - отдает тепло
Q4 =C1*m1*(T-T1) - вода остывает - отдает тепло
уравнение теплового баланса
Q1+Q2+Q3+Q4=0
C2*m2*(T-T2) + λ*m2 - Lm1 +C1*m1*(T-T1) = 0
m2 (C2*(T-T2) + λ) - m1 (L - C1*(T-T1) ) = 0
m2 (C2*(T-T2) + λ) = m1 (L - C1*(T-T1) )
m1 = m2 (C2*(T-T2) + λ) / (L - C1*(T-T1) )
m1 = 150 (2100(0-(-20))+3.4*10^5) / (2.3*10^6 -4200(0-100))= 21.066 =21 г