До батареї з напругою 36 В приєднані послідовно 2 лампи опором по 15 Ом і електричний дзвінок.Струм у колі дорівнює 0,4 А.Визначити опір електричного кола
осмотрим, как влияет э.д.с. самоиндукции на процесс установления тока в цепи, содержащей индуктивность.
в цепи, представленной на схеме 10.10, течёт ток. отключим источник e, разомкнув в момент времени t = 0 ключ к. ток в катушке начинает убывать, но при этом возникает э.д.с. самоиндукции, поддерживающая убывающий ток.
рис. 10.10.
запишем для новой схемы 10.10.b уравнение правила напряжений кирхгофа:
.
разделяем переменные и интегрируем:
пропотенцировав последнее уравнение, получим:
.
постоянную интегрирования найдём, воспользовавшись начальным условием: в момент отключения источника t = 0, ток в катушке i(0) = i0.
отсюда следует, что c = i0 и поэтому закон изменения тока в цепи приобретает вид:
. (10.7)
график этой зависимости на рис. 10.11. оказывается, ток в цепи, после выключения источника, будет убывать по экспоненциальному закону и станет равным нулю только спустя t = ¥.
рис. 10.11.
вы и сами теперь легко покажете, что при включении источника (после замыкания ключа к) ток будет нарастать тоже по экспоненциальному закону, асимптотически приближаясь к значению i0 (см. рис. 10.
. (10.8)
но вернёмся к первоначальной размыкания цепи.
мы отключили в цепи источник питания (разомкнули ключ к), но ток — теперь в цепи 10.8.b — продолжает течь. где черпается энергия, обеспечивающая бесконечное течение этого убывающего тока?
ток поддерживается электродвижущей силой самоиндукции e = . за время dt убывающий ток совершит работу:
da = eси×i×dt = –lidi.
ток будет убывать от начального значения i0 до нуля. проинтегрировав последнее выражение в этих пределах, получим полную работу убывающего тока:
. (10.9)
совершение этой работы сопровождается двумя процессами: исчезновением тока в цепи и исчезновением магнитного поля катушки индуктивности.
с чем же связана была выделившаяся энергия? где она была локализована? располагалась ли она в проводниках и связана ли она с направленным движением носителей заряда? или она локализована в объёме соленоида, в его магнитном поле?
опыт даёт ответ на эти вопросы: энергия электрического тока связана с его магнитным полем и распределена в пространстве, занятом этим полем.
несколько изменим выражение (10.9), учтя, что для длинного соленоида справедливы следующие утверждения:
l = m0n2sl (10.5) — индуктивность;
b0 = m0ni0 (9.17) — поле соленоида.
эти выражения используем в (10.9) и получим новое уравнение для полной работы экстратока размыкания, или — начального запаса энергии магнитного поля:
. (10.10)
здесь v = s×l — объём соленоида (магнитного
энергия катушки с током пропорциональна квадрату вектора магнитной индукции.
разделив эту энергию на объём магнитного поля, получим среднюю плотность энергии:
[]. (10.11)
это выражение похоже на выражение плотности энергии электростатического поля:
.
обратите внимание: в сходных уравнениях, если e0 — в числителе, m0 — непременно в знаменателе.
зная плотность энергии в каждой точке магнитного поля, мы теперь легко найдём энергию, в любом объёме v поля.
локальная плотность энергии в заданной точке поля:
Если соединить проводником два разноимённо заряженных шарика, то заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет (рис. 15.9, а). Сторонние силы. Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис. 15.9, б). Одно лишь электрическое поле заряженных частиц (кулоновское поле) не поддерживать постоянный ток в цепи. Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами. Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет ещё очевиднее, если обратиться к закону сохранения энергии. Электростатическое поле потенциально. Работа этого поля при перемещении в нём заряженных частиц по замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий её в цепь. В нём, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы. Работа этих сил вдоль замкнутого контура должна быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают её затем проводникам электрической цепи. Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д. При замыкании цепи создаётся электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис. 15.9, б). Природа сторонних сил. Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы — это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике. В гальваническом элементе, например в элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещённых в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток во внешней электрической цепи. Электродвижущая сила. Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращённо ЭДС). Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда: Электродвижущую силу, как и напряжение, выражают в вольтах. Разность потенциалов на клеммах батареи при разомкнутой цепи равна электродвижущей силе. ЭДС одного элемента батареи обычно 1—2 В. Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всём контуре, а только на данном участке. Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов.
осмотрим, как влияет э.д.с. самоиндукции на процесс установления тока в цепи, содержащей индуктивность.
в цепи, представленной на схеме 10.10, течёт ток. отключим источник e, разомкнув в момент времени t = 0 ключ к. ток в катушке начинает убывать, но при этом возникает э.д.с. самоиндукции, поддерживающая убывающий ток.
рис. 10.10.
запишем для новой схемы 10.10.b уравнение правила напряжений кирхгофа:
.
разделяем переменные и интегрируем:
пропотенцировав последнее уравнение, получим:
.
постоянную интегрирования найдём, воспользовавшись начальным условием: в момент отключения источника t = 0, ток в катушке i(0) = i0.
отсюда следует, что c = i0 и поэтому закон изменения тока в цепи приобретает вид:
. (10.7)
график этой зависимости на рис. 10.11. оказывается, ток в цепи, после выключения источника, будет убывать по экспоненциальному закону и станет равным нулю только спустя t = ¥.
рис. 10.11.
вы и сами теперь легко покажете, что при включении источника (после замыкания ключа к) ток будет нарастать тоже по экспоненциальному закону, асимптотически приближаясь к значению i0 (см. рис. 10.
. (10.8)
но вернёмся к первоначальной размыкания цепи.
мы отключили в цепи источник питания (разомкнули ключ к), но ток — теперь в цепи 10.8.b — продолжает течь. где черпается энергия, обеспечивающая бесконечное течение этого убывающего тока?
ток поддерживается электродвижущей силой самоиндукции e = . за время dt убывающий ток совершит работу:
da = eси×i×dt = –lidi.
ток будет убывать от начального значения i0 до нуля. проинтегрировав последнее выражение в этих пределах, получим полную работу убывающего тока:
. (10.9)
совершение этой работы сопровождается двумя процессами: исчезновением тока в цепи и исчезновением магнитного поля катушки индуктивности.
с чем же связана была выделившаяся энергия? где она была локализована? располагалась ли она в проводниках и связана ли она с направленным движением носителей заряда? или она локализована в объёме соленоида, в его магнитном поле?
опыт даёт ответ на эти вопросы: энергия электрического тока связана с его магнитным полем и распределена в пространстве, занятом этим полем.
несколько изменим выражение (10.9), учтя, что для длинного соленоида справедливы следующие утверждения:
l = m0n2sl (10.5) — индуктивность;
b0 = m0ni0 (9.17) — поле соленоида.
эти выражения используем в (10.9) и получим новое уравнение для полной работы экстратока размыкания, или — начального запаса энергии магнитного поля:
. (10.10)
здесь v = s×l — объём соленоида (магнитного
энергия катушки с током пропорциональна квадрату вектора магнитной индукции.
разделив эту энергию на объём магнитного поля, получим среднюю плотность энергии:
[]. (10.11)
это выражение похоже на выражение плотности энергии электростатического поля:
.
обратите внимание: в сходных уравнениях, если e0 — в числителе, m0 — непременно в знаменателе.
зная плотность энергии в каждой точке магнитного поля, мы теперь легко найдём энергию, в любом объёме v поля.
локальная плотность энергии в заданной точке поля:
.
значит, dw = wdv и энергия в объёме v равна:
.
Если соединить проводником два разноимённо заряженных шарика, то заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет (рис. 15.9, а). Сторонние силы. Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис. 15.9, б). Одно лишь электрическое поле заряженных частиц (кулоновское поле) не поддерживать постоянный ток в цепи. Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами. Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет ещё очевиднее, если обратиться к закону сохранения энергии. Электростатическое поле потенциально. Работа этого поля при перемещении в нём заряженных частиц по замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий её в цепь. В нём, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы. Работа этих сил вдоль замкнутого контура должна быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают её затем проводникам электрической цепи. Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д. При замыкании цепи создаётся электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис. 15.9, б). Природа сторонних сил. Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы — это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике. В гальваническом элементе, например в элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещённых в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток во внешней электрической цепи. Электродвижущая сила. Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращённо ЭДС). Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда: Электродвижущую силу, как и напряжение, выражают в вольтах. Разность потенциалов на клеммах батареи при разомкнутой цепи равна электродвижущей силе. ЭДС одного элемента батареи обычно 1—2 В. Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всём контуре, а только на данном участке. Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов.