Четыре одинаковых сопротивления, каждое из которых равно r,соединяют различными Определить эквивалентное сопротивление во всех случаях. ( сопротивление каждого резистора 2 Ом)
Штатная скорость км/ч м/с м/с м/с. Интервал движения Время посадки высадки Время торможения до остановки Тормозной путь м . Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е. СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
Задача №1. Запишем условие. Масса плиты равна m = 40,5 кг; плотность мрамора находим в таблице задачника; "ро"1 = 2700кг/м куб: Плотность воды "ро"2 = 1000 кг/м куб. Определить сил у F - ?Решение. Находим силу тяжести, действующую на плиту. Она равна произведению ускорения свободного падения (g = 9,8 м/с кв, округляем до 10м/с кв) на массу плиты. Получим: Fт = gm; Fт = 10м/с кв*40,5 кг = 405 Н. . Теперь, зная массу плиты и плотность мрамора, находим объем плиты. Он равен отношению массы к плотности V = m/"ро"1; V = 40,5 кг/2700 кг/м куб = 0,015 м куб. На плиту действует архимедова сила. Она равнаF(Aрх) = "ро"2gV. То есть, произведению плотности воды на ускорение свободного падения и объем плиты, "двойка" - это индекс плотности, а не коэффициент. F(арх) = 1000 кг/м куб *10м/с кв*0,015 м куб = 150 Н. Сила тяжести направлена вниз, а архимедова сила - вверх. Чтобы удержать плиту, необходимо приложить силу, равную разности этих сил: F = Fт - F(арх) ; F = 405Н - 150Н = 255 Н. ответ: плиту нужно поддерживать, чтобы не упала на дно, с силой 255 Н. Задача №2. Запишем условие. m = 80г = 0,08 кг; Находим в таблице плотность пробкового дерева "ро"1 = 200 кг/м куб; Плотность воды и ускорение силы тяжести мы уже находили: "ро"2 = 1000 кг/м куб и g = 10 Н/кг. (так удобнее записать, но это те же м/с кв! ) Действия похожие. Сила тяжести Fт = gm; F = 10Н/кг*0,08 кг = 0,8 Н; Объем куска дерева: V = m /"ро"2; V =0,08 кг/ 200 кг/м куб = 0,0004 м куб; Архимедова сила F(арх) = "ро"2*gV F(арх) = 200 кг/м куб *10Н/кг*0,0004 м куб = 4 Н; Так как архимедова сила больше силы тяжести, то кусок пробкового дерева при погружении его воду, будет всплывать. И, чтобы удержать его под водой, необходимо приложить силу, равную разности между архимедовой силой (4 Н) и силой тяжести (0,8 Н) . Теперь мы уже будем не поддерживать кусок дерева, а давить на него сверху. Чтобы не всплывал. А сила равна F = F(арх) - Fт; F= 4Н - 0,8Н = 3,2Н. "Питерки" Вам!
Штатная скорость км/ч м/с м/с м/с.
Интервал движения
Время посадки высадки
Время торможения до остановки
Тормозной путь м .
Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е.
СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
Итак: СК CH
м м.
О т в е т : дистанция между составами: м мм .
V = m/"ро"1; V = 40,5 кг/2700 кг/м куб = 0,015 м куб. На плиту действует архимедова сила. Она равнаF(Aрх) = "ро"2gV. То есть, произведению плотности воды на ускорение свободного падения и объем плиты, "двойка" - это индекс плотности, а не коэффициент.
F(арх) = 1000 кг/м куб *10м/с кв*0,015 м куб = 150 Н. Сила тяжести направлена вниз, а архимедова сила - вверх. Чтобы удержать плиту, необходимо приложить силу, равную разности этих сил: F = Fт - F(арх) ; F = 405Н - 150Н = 255 Н. ответ: плиту нужно поддерживать, чтобы не упала на дно, с силой 255 Н.
Задача №2. Запишем условие. m = 80г = 0,08 кг; Находим в таблице плотность пробкового дерева "ро"1 = 200 кг/м куб; Плотность воды и ускорение силы тяжести мы уже находили: "ро"2 = 1000 кг/м куб и g = 10 Н/кг. (так удобнее записать, но это те же м/с кв! ) Действия похожие. Сила тяжести Fт = gm; F = 10Н/кг*0,08 кг = 0,8 Н; Объем куска дерева: V = m /"ро"2;
V =0,08 кг/ 200 кг/м куб = 0,0004 м куб; Архимедова сила F(арх) = "ро"2*gV
F(арх) = 200 кг/м куб *10Н/кг*0,0004 м куб = 4 Н; Так как архимедова сила больше силы тяжести, то кусок пробкового дерева при погружении его воду, будет всплывать. И, чтобы удержать его под водой, необходимо приложить силу, равную разности между архимедовой силой (4 Н) и силой тяжести (0,8 Н) . Теперь мы уже будем не поддерживать кусок дерева, а давить на него сверху. Чтобы не всплывал. А сила равна F = F(арх) - Fт;
F= 4Н - 0,8Н = 3,2Н. "Питерки" Вам!