А́пля — небольшой объём жидкости, ограниченный поверхностью вращения или близкой к ней.
Форма капли определяется действием сил поверхностного натяжения и внешних сил.
Капли образуются:
при стекании жидкости с края поверхности или из малых отверстий. при конденсации пара: а) на твёрдой несмачиваемой поверхности; б) на центрах конденсации. при распылении жидкости (смотри Аэрозоль) . эмульгировании. Роса образуются при конденсации водяного пара на поверхностях, тумана и облака — при конденсации водяного пара на пылинках воздуха.
Капли росыФорма капли определяется действием поверхностного натяжения и внешних сил (в первую очередь силы тяжести) . Микроскопические капли, для которых сила тяжести не играет определяющей роли, имеют форму шара — тела с минимальной для данного объёма поверхностью. Крупные капли в земных условиях имеют шарообразную форму только при равенстве плотностей жидкости капли и окружающей её среды.
Падающие дождевые капли под действием силы тяжести, давления встречного потока воздуха и поверхностного натяжения принимают вытянутую форму. На несмачиваемых поверхностях капли приобретают форму приплюснутого шара.
Форма и размер капли, отрывающихся от конца капиллярной трубки, зависят от диаметра трубки, поверхностного натяжения и плотности жидкости. Эта зависимость лежит в основе методов определения поврехностного натяжения жидкостей по массе капель, отрывающейся от вертикальной цилиндрической трубки, и по форме капли, висящей на конце трубки.
Соленоид длиной 50 см и диаметром 0,8 см имеет 20000 витков медного провода и находится под постоянным напряжением. Определить время, в течение которого в обмотке соленоида выделится количество теплоты, равное энергии магнитного поля в соленоиде Положим, что соленоид намотан цилиндрическим медным проводом, уложенным в один слой виток к витку. Длина обмотки соленоида L=0.5м, диаметр обмотки D=0.008м, число витков соленоида N=20000.
Отсюда следует, что диаметр провода d=0.5/20000=2.5E-5, или 0.025мм. Микропровод, однако. Индуктивность этого соленоида L=mu0*N^2*S/L, где mu0=4*зш*1E-7Гн/м=1.257E-6Гн/м, а S=pi*D^2/4=3.14159*0.008^2/4=.5E-5м2, L=1.257E-6*20000^2*5E-5/0.5=5E-2Гн (50мГн). Длина обмотки L1=N*pi*D=20000*3.14159*0.008=500м. Сечение провода S1=pi*d^2/4=3.14159*(2.5E-5)^2/4=5E-10м2 Сопротивление обмотки R=ro*L1/S=1.68E-8*500/5E-10=17000Ом. Тогда при токе I через соленоид в нем будет выделяться тепло I^2*R*t, а энергия магнитного поля этого соленоида будет L*I^2/2, если их приравнять, то получим
I^2*R*t= L*I^2/2, и разделив на I^2, найдем t=L/2R=0.05/(2*17000)=1.5E-6с.
Форма капли определяется действием сил поверхностного натяжения и внешних сил.
Капли образуются:
при стекании жидкости с края поверхности или из малых отверстий.
при конденсации пара:
а) на твёрдой несмачиваемой поверхности;
б) на центрах конденсации.
при распылении жидкости (смотри Аэрозоль) .
эмульгировании.
Роса образуются при конденсации водяного пара на поверхностях, тумана и облака — при конденсации водяного пара на пылинках воздуха.
Капли росыФорма капли определяется действием поверхностного натяжения и внешних сил (в первую очередь силы тяжести) . Микроскопические капли, для которых сила тяжести не играет определяющей роли, имеют форму шара — тела с минимальной для данного объёма поверхностью. Крупные капли в земных условиях имеют шарообразную форму только при равенстве плотностей жидкости капли и окружающей её среды.
Падающие дождевые капли под действием силы тяжести, давления встречного потока воздуха и поверхностного натяжения принимают вытянутую форму. На несмачиваемых поверхностях капли приобретают форму приплюснутого шара.
Форма и размер капли, отрывающихся от конца капиллярной трубки, зависят от диаметра трубки, поверхностного натяжения и плотности жидкости. Эта зависимость лежит в основе методов определения поврехностного натяжения жидкостей по массе капель, отрывающейся от вертикальной цилиндрической трубки, и по форме капли, висящей на конце трубки.
Форма капли является аэродинамически оптимальной.
Отсюда следует, что диаметр провода d=0.5/20000=2.5E-5, или 0.025мм. Микропровод, однако.
Индуктивность этого соленоида L=mu0*N^2*S/L, где mu0=4*зш*1E-7Гн/м=1.257E-6Гн/м, а S=pi*D^2/4=3.14159*0.008^2/4=.5E-5м2, L=1.257E-6*20000^2*5E-5/0.5=5E-2Гн (50мГн). Длина обмотки L1=N*pi*D=20000*3.14159*0.008=500м. Сечение провода S1=pi*d^2/4=3.14159*(2.5E-5)^2/4=5E-10м2 Сопротивление обмотки R=ro*L1/S=1.68E-8*500/5E-10=17000Ом. Тогда при токе I через соленоид в нем будет выделяться тепло I^2*R*t, а энергия магнитного поля этого соленоида будет L*I^2/2, если их приравнять, то получим
I^2*R*t= L*I^2/2, и разделив на I^2, найдем t=L/2R=0.05/(2*17000)=1.5E-6с.