Бак высоты h полностью заполнен водой и плотно закрыт крышкой. на дне бака находятся n пузырьков воздуха. как изменится давление на дно сосуда, если один пузырек всплывет? считать, что вода абсолютно несжимаема.
Давление у дна сосуда (на глубине H) p(H)=ρgHp(H)=ρgH, где ρρ - плотность воды. Давление внутри пузырька, находящегося у дна, p0=ρgH+2σ/rp0=ρgH+2σ/r, где σσ - коэффициент поверхностного натяжения воды; r - радиус пузырька. Так как пузырек всплывает при постоянной температуре и растворимостью воздуха в воде можно пренебречь, то давление p0p0 внутри пузырька и его объем V связаны формулой p0V=constp0V=const. При всплытии радиус пузырька r и его объем V остаются неизменными, так как по условию задачи вода несжимаема. Следовательно, не изменяется и p0p0. Таким образом, для давления p в воде у верхней стенки сосуда после всплытия пузырька можно написать: p(0)=p0−2σ/rρgHp(0)=p0−2σ/rρgH; давление на глубине h будет равно p(h)=p(0)+ρgh=ρg(H+h)p(h)=p(0)+ρgh=ρg(H+h), т. е. на величину ρgHρgH больше, чем до всплытия пузырька.