Автомобіль масою 2 т піднімається на гору, нахил якої становить 0,2. На ділянці шляху 32 м швидкість руху автомобіля зросла від 21,6км/год до 36км/год. Вважаючи рух автомобіля рівноприскореним, визначте коефіцієнт тертя , якщо сила тяги двигуна дорівнює 6304,16Н.
Спустя 0,5с скорость камня стала равной 7 м/с.
На какую максимальную высоту над первоначальным уровнем поднимается камень?
Дано
Vo = 10 м/c
t1 = 0,5 c
V1 =7 м/c
Найти h
Решение
Разложим скорость V на вертикальную Vy и горизнтальную Vx составляющие.
Где Vx=V*cos(a); Vy=V*sin(a)
V=корень(Vx^2+Vy^2)
где a-угол наклона скорости к горизонту.
Запишемуравнения движения камня
Горизонтальная составляющая скорости постоянна во времени
Vx =Vo*cos(a) -const
Sx=Vx*t
Vy=Voy-gt =Vo*sin(a)-gt
Sy =Voy*t -gt^2/2 =Vo*sin(a)*t - gt^2/2
По заданию при t1=0,5 c. V1=7м/с
V1y=Vo*sin(a)-gt1
Подставим это выражения в формулу полной скорости
V1=корень(V1x^2+V1y^2) = корень((Vo*cos(a))^2 +(Vo*sin(a)-gt1)^2)=
=корень(Vo^2*cos^2(a) + Vo^2*sin^2(a) - 2Vo*g*t1*sin(a) + g^2*t1^2)=
=корень(Vo^2 - 2Vo*g*t1*sin(a) + g^2*t1^2)
корень(Vo^2 - 2Vo*g*t1*sin(a) + g^2*t1^2) =V1
Возведем обе части в квадрат и найдем sin(a)
Vo^2 - 2Vo*g*t1*sin(a) + g^2*t1^2 = V1^2
2Vo*g*t1*sin(a) = Vo^2 + g^2*t1^2 - V1^2
sin(a) =(Vo^2+(g*t1)^2-V1^2)/(2Vo*g*t1)
На самой максимальной высоте вертикальная составляющая скорости равна нулю
Vy=0 или Vo*sin(a) -gt =0
t = Vo*sin(a)/g
Максимальная высота подъема составит
h = Vo*sin(a)t - gt^2/2 = Vo^2*sin^2(a)/g - g*Vo^2*sin^2(a)/(2g^2) =
= Vo^2*sin^2(a)/g - Vo^2*sin^2(a)/(2g) = Vo^2*sin^2(a)/(2g)
Подставим в формулу выражение для sin(a)
h= Vo^2*sin^2(a)/(2g) = Vo^2*(Vo^2+(g*t1)^2-V1^2)^2/(2Vo*g*t1)^2/(2g)=
=(Vo^2+(g*t1)^2-V1^2)^2/(g*t1)^2/(8g) =(1/(8g)) ((Vo^2-V1^2)/(g*t1) +gt1)^2
Подставим числовые значения и найдем h
h =(1/(8*9,81))((10^2-7^2)/(9,81*0,5)+9,81*0,5)^2 =2,98 м
Если принять что g=10 м/с^2
h =(1/(8*10))((10^2-7^2)/(10*0,5)+10*0,5)^2 =2,888 м
ответ : 2,98 м
Если система замкнута, то изменения в ней гасятся сами по себе.
Другое дело - открытые системы.
В них флуктуации под воздействием внешних сил могут нарастать до такого состояния, когда система их погасить уже не сможет. На практике внутренние флуктуации рассматриваются в концепции самоорганизации как безвредные.
Но внешние воздействия могут оказывать большое влияние.
В последнее время эти положения корректируются. Это касается «естественного отбора» флуктуации: чтобы яление самоорганизации имела место, то необходимо, чтобы одни флуктуации получали подпитку снаружи системы, тем самым, получали бы некоторое преимуществом над другими флуктуациями.