Астрономы повседневно находят новые звёзды и планеты при различных телескопов. Наблюдая за взаимодействием и движением планет и звёзд, астрономы определяют их различные характеристики, например радиус, скорость движения и вращения, изменение траектории под воздействием других небесных тел и т. п. Из полученных величин они рассчитывают некоторые другие характерные величины, такие, например, как массу, объём, плотность, ускорение свободного падения. Учёные открыли новую планету XRBC-2344, радиус которой равен 3,3 тыс. километров, а масса которой составляет 1,3⋅1024 кг.
Каково будет ускорение свободного падения у поверхности открытой планеты? g = мс2. (Результат округли до одного знака после запятой.)
Это мы будем делать посредством закона Менделеева-Клапейрона. Имеем в общем виде:
P V = m R T / M. Выводим массу воздуха внутри шара:
m(г) = P V M / R T0.
То же уравнение М.-К. делим на V. Имеем в общем виде:
P = p R T / M. Выводим плотность воздуха снаружи:
p = P M / R T.
А теперь время заняться матаном, хы.
V = (m(об) + (P V M / R T0)) / (P M / R T),
V = (m(об) R T0 + P V M) R T / R T0 P M,
V = (T m(об) R T0 + T P V M) / T0 P M,
T m(об) R T0 + T P V M = V T0 P M,
T m(об) R T0 = V P M (T0 - T),
V = T m(об) R T0 / M P (T0 - T). Отмучались. Считаем:
V = 293 * 120 * 8,31 * 600 / 29*10^-3 * 10^5 * 307,
V = 175 307 760 / 890 300 = 196,908 м^3.
Положение материальной точки в пространстве задается радиусвектором r
r = xi + yj + zk ,
где i, j, k – единичные векторы направлений; x, y, z- координаты точки.
Средняя скорость перемещения
v = r/t,
где r – вектор перемещения точки за интервал времени t.
Средняя скорость движения
v = s/t,
где s – путь, пройденный точкой за интервал времени t.
Мгновенная скорость материальной точки
v = dr/dt = vxi + vyj + vzk,
где vx = dx/dt , vy = dy/dt , vz = dz/dt - проекции вектора скорости на оси
координат.
Модуль вектора скорости
v v v v .
2
z
2
y
2
x
Среднее ускорение материальной точки
a = v/t,
где v - приращение вектора скорости материальной точки за интервал
времени t..
Мгновенное ускорение материальной точки
a = dv/dt = axi + ayj + azk,
где ax = d vx /dt , ay = d vy /dt , az = d vz
/dt - проекции вектора ускорения на
оси координат.
Проекции вектора ускорения на касательную и нормаль к траектории
a = dv/dt, an = v
2
/R,
где v – модуль вектора скорости точки; R – радиус кривизны
траектории в данной точке.
Модуль вектора ускорения
a = a a a a a .
2
n
2 2
z
2
y
2
x
Путь, пройденный точкой
t
0
s vdt ,
где v - модуль вектора скорости точки.
Угловая скорость и угловое ускорение абсолютно твердого тела
= d/dt, = d/dt,
где d - вектор угла поворота абсолютно твердого тела относительно оси
вращения (d, , - аксиальные векторы, направленные вдоль оси
вращения).
Связь между линейными и угловыми величинами при вращении
абсолютно твердого тела:
v = r, an =
2R, a = R,
где r - радиус-вектор рассматриваемой точки абсолютно твердого тела
относительно произвольной точки на оси вращения; R - расстояние от
оси вращения до этой точки.
А - 1
Радиус-вектор частицы изменяется по закону r(t) = t
2
i + 2tj – k.
Найти: 1) вектор скорости v; 2) вектор ускорения a; 3) модуль вектора
скорости v в момент времени t = 2 с; 4) путь, пройденный телом за
первые 10 с.
Решение
По определению:
1) вектор скорости v = dr /dt = 2ti + 2j;
2) вектор ускорения a = dv/dt = 2i.
3) Так как v = vxi + vyj, то модуль вектора скорости v=
2
y
2
vx v .
В нашем случае
vx
2t; vy
2
, поэтому, при t = 2 с,
v= v v (2t) (2) 2 5 4,46 м/ с.
2 2 2
y
2
x
4) По определению пути
2
1
t
t
s vdt
, где t1 =0, t2 = 10 c, а
v 2 t 1
2
,
тогда путь за первые 10 с