Если решать эту задачу по школьному, без привлечения инструментария матанализа, то рассуждать можно следующим образом, - в любой точке траектории ускорение свободного падения может быть разложено на две составляющих - вдоль касательной к траектории (нормальное ускорение) и вдоль нормали к траектории (центростремительное ускорение), нам нужна вторая величина, так как она позволяет рассчитать искомый радиус. В наивысшей точке подъема мяча, очевидно, что центростремительное ускорение целиком совпадает с ускорением свободного падения:
Откуда:
Горизонтальная составляющая скорости будет везде одинакова и равна (учтем что 54 км/ч=15 м/с):
Запишем уравнение теплового баланса
Q1 + Q2 = Q3
где Q1 - количество теплоты поглощенное стальным чайником
Q2 - количество теплоты поглощенное водой
Q3 - количество теплоты отданное бруском
Тогда c1*m1 * (t2-t1) + c2*m2 * (t2-t1) = c3*m3 * (t3-t2)
Удельная теплоемкость стали 0,46 кДж/(кг*К), воды 4,18 кДж/(кг*К)
Тогда
0,46*1,2*(25-20) + 4,18*1,9*(25-20) = с3 * 0,65 (100-25)
Отсюда с3 = 0,87 кДж/(кг*К)
Данной удельная теплоемкость может соответствовать Глина у которой с = 0,88 кДж/(кг*К)
11,25 м
Объяснение:
Если решать эту задачу по школьному, без привлечения инструментария матанализа, то рассуждать можно следующим образом, - в любой точке траектории ускорение свободного падения может быть разложено на две составляющих - вдоль касательной к траектории (нормальное ускорение) и вдоль нормали к траектории (центростремительное ускорение), нам нужна вторая величина, так как она позволяет рассчитать искомый радиус. В наивысшей точке подъема мяча, очевидно, что центростремительное ускорение целиком совпадает с ускорением свободного падения:
Откуда:
Горизонтальная составляющая скорости будет везде одинакова и равна (учтем что 54 км/ч=15 м/с):
м/с
Искомый радиус кривизны траектории:
м.