1. поток магнитной индукции через площадь поперечного сечения катушки, имеющей 1000 витков, изменился на вб в результате изменения тока в катушке с 4 а до 20 а. определить индуктивность катушки.
.
2. рамка из проволоки, в которую вмонтирован конденсатор, пронизывается перпендикулярно ее плоскости однородным магнитным полем. скорость изменения индукции этого поля тл/с. определить энергию заряженного конденсатора, если его емкость 4 мкф, а площадь рамки 50 см2.
.
3. из двух одинаковых кусков проволоки сделаны два контура: первый – в форме круга, второй – квадрата. оба контура помещены в изменяющееся со временем однородное магнитное поле; плоскости контуров параллельны. найдите величину силы тока в квадратном контуре, если в круглом индуцируется постоянный ток 0,4 а.
.
4. в однородном магнитном поле с индукцией 0,06 тл находится соленоид диаметром 8 см, имеющий 80 витков проволоки. сечение проволоки 2 мм2, удельное сопротивление 2,5*10-8 ом*м. в начальном положении магнитный поток через соленоид максимален, затем соленоид поворачивают на угол 1800 вокруг оси, перпендикулярной линиям индукции магнитного поля. найти заряд по соленоиду, если его концы замкнуты между собой.
5. по двум металлическим параллельным рейкам, расположенным в горизонтальной плоскости и замкнутым на , перемещается под действием постоянной силы f со скоростью 10 м/с проводящая перемычка. вся система находится в однородном магнитном поле. найдите модуль силы f, если на каждую секунду выделяется q = 1 дж теплоты. трением пренебречь.
Предположим, ты нашел сверло подлиннее и дрель придумал как предотвратить сдавливание ствола скважины гигантским давлением и у тебя все получилось. Думаешь, что камень будет падать до центра Земли, достигнет первой космической скорости и полетит к противоположной поверхности, постепенно замедляясь, а потом опять начнет падать в шахту и так и будет летать туда-сюда? Мы напомним про сопротивление воздуха и предложим откачать воздух из скважины, но и это не Есть еще сила Кориолиса которая прижмет падающий камень к стенке шахты. По мере приближения к центру планеты сила тяжести будет ослабевать, а силу трения никто не отменял. Камень рано или поздно просто остановится, так и не долетев до центра. А если какие-то умники посоветуют бурить от полюса до полюса, то напомни им, что вокруг Земли кружится Луна. Приливная сила, тоже будет прижимать камень к стенке шахты, хотя и не так быстро.
В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.
Различают следующие основные типы двигателей внутреннего сгорания: поршневой, роторно-поршневой и газотурбинный. Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.
Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются: автономность, универсальность (сочетание с различными потребителями), невысокая стоимость, компактность, малая масса, возможность быстрого запуска, многотопливность.
Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся: высокий уровень шума, большая частота вращения коленчатого вала, токсичность отработавших газов, невысокий ресурс, низкий коэффициент полезного действия.
В зависимости от вида применяемого топлива различают бензиновые и дизельные двигатели. Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.
Водородный двигатель с точки зрения экологии является перспективным, т. к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.
Устройство двигателя внутреннего сгорания
Поршневой двигатель внутреннего сгорания включает корпус, два механизма (кривошипно-шатунный и газораспределительный) и ряд систем (впускную, топливную, зажигания, смазки, охлаждения, выпускную и систему управления).
Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.
Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.
Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.
Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.
Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.
Работа двигателя внутреннего сгорания
Принцип работы ДВС основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.
Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель): впуск, сжатие, рабочий ход и выпуск.
Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).
На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.
На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.