1) используя уравнение движения х(t) = 7 – 2t+4, определить начальную координату тела, проекцию вектора скорости, построить график движения. 2) используя уравнение движения +4t=0 определить начальную координату тела, проекцию вектора скорости, построить график движения.
Зміна кількості руху пропорційна прикладеній рушійній силі і відбувається у напрямку тієї прямої, вздовж якої ця сила діє.
Сучасне формулювання:
В інерційних системах відліку прискорення, якого набуває матеріальна точка, прямо пропорційне силі, що його викликає, збігається з нею за напрямком і обернено пропорційне масі матеріальної точки.
де {\displaystyle {\vec {a}}}\vec{a} — прискорення тіла, {\displaystyle {\vec {F}}}{\displaystyle {\vec {F}}} — сила, прикладена до тіла, а {\displaystyle \ m}{\displaystyle \ m} — маса тіла.
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Зміна кількості руху пропорційна прикладеній рушійній силі і відбувається у напрямку тієї прямої, вздовж якої ця сила діє.
Сучасне формулювання:
В інерційних системах відліку прискорення, якого набуває матеріальна точка, прямо пропорційне силі, що його викликає, збігається з нею за напрямком і обернено пропорційне масі матеріальної точки.
Зазвичай цей закон записується у вигляді формули
{\displaystyle {\vec {a}}={\frac {\vec {F}}{m}},}{\displaystyle {\vec {a}}={\frac {\vec {F}}{m}},}
де {\displaystyle {\vec {a}}}\vec{a} — прискорення тіла, {\displaystyle {\vec {F}}}{\displaystyle {\vec {F}}} — сила, прикладена до тіла, а {\displaystyle \ m}{\displaystyle \ m} — маса тіла.
Або в іншому вигляді:
{\displaystyle m{\vec {a}}={\vec {F}}}{\displaystyle m{\vec {a}}={\vec {F}}}
Формулювання другого закону Ньютона з використанням поняття імпульсу :
В інерційних системах відліку похідна імпульсу матеріальної точки за часом дорівнює силі, що діє на неї[12]:
{\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}},}{\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}},}
де {\displaystyle {\vec {p}}=m{\vec {v}}}{\displaystyle {\vec {p}}=m{\vec {v}}} — імпульс (кількість руху) точки, {\displaystyle {\vec {v}}}{\displaystyle {\vec {v}}} — її швидкість, а {\displaystyle t}t — час.
Объяснение:
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$