Ответ
Это числа – 6, 7, 9, 13. Поскольку (А + С) + (В + D) = (А + D) + (В + С), а из попарных сумм чисел 13, 15, 16, 20, 22 совпадают только 13 + 22 = 15 + 20 = 35, то А + В = 16, С + D = 19. Поскольку А и В одинаковой четности, то получаем систему двух уравнений с двумя неизвестными:
А + В = 16
|A – B| = 2.
Решая систему, находим два числа 7 и 9 (то есть А = 7, В = 9 или А = 9, В = 7). Далее легко находим два недостающих числа: 6 и 13.
Это числа – 6, 7, 9, 13. Поскольку (А + С) + (В + D) = (А + D) + (В + С), а из попарных сумм чисел 13, 15, 16, 20, 22 совпадают только 13 + 22 = 15 + 20 = 35, то А + В = 16, С + D = 19. Поскольку А и В одинаковой четности, то получаем систему двух уравнений с двумя неизвестными:
А + В = 16
|A – B| = 2.
Решая систему, находим два числа 7 и 9 (то есть А = 7, В = 9 или А = 9, В = 7). Далее легко находим два недостающих числа: 6 и 13.