Определение: Координаты вектора равны разности соответствующих координат точек его конца и начала. Следовательно, вектор ВА{3-(-7); 8-3} или ВА={10;5}. Вектор ВС={n-(-7);11-3} = {n+7;8}.
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение: (a,b)=Xa*Xb+Ya*Yb или в нашем случае:
Определение: Координаты вектора равны разности соответствующих координат точек его конца и начала. Следовательно, вектор ВА{3-(-7); 8-3} или ВА={10;5}. Вектор ВС={n-(-7);11-3} = {n+7;8}.
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение: (a,b)=Xa*Xb+Ya*Yb или в нашем случае:
(ВА,ВС) = 10*(n+7)+5*8 = 10n+110. = 10(n+11). => n+11 = 0. Тогда ответ:
n = -11.