В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
PRIL82
PRIL82
06.05.2021 10:13 •  Другие предметы

Прямая пересекает стороны АВ i ВС треугольника ABC соответственно в точках М i K, которые являются серединами этих cxopин. Докажите, что вершины данного треугольника равноудалены от прямой MK

Показать ответ
Ответ:
platymax
platymax
17.04.2019 01:10
∆АВС. М - середина АВ. К - середина ВС.
АР ┴ МК; BE ┴ МК; CF ┴ МК.
Довести: АР = BE = CF.
Доведения:
За умовою К - середина ВС, тоді ВК = КC.
Аналогічно М - середина АВ, тоді AM = MB.
Розглянемо ∆ВЕК i ∆CFK.
За умовою ВЕ ┴ МК; ∟BЕК = 90°.
Аналогічно CF ┴ MK; ∟CFK = 90°.
1) ∟ВЕК = ∟CFK = 90°;
2) ∟ВКЕ = ∟CKF (вертикальні);
3) ВК = КС.
За I ознакою piвностi трикутників маємо: ∆ВЕК = ∆CFK.
Звідси BE = CF.
Розглянемо ∆АРМ i ∆ВЕМ:
∟АРМ = ∟ВЕМ = 90°; AM = MP; ∟AMP = ∟ВМЕ (вертикальні).
За I ознакою piвностi трикутників маємо: ∆АРМ = ∆ВЕМ.
Звідси BE = АР.
Отже АР = BE = CF.
Тому вершина трикутника рівновіддалена від прямої МК.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота