Дан треугольник АВС, СL - биссектриса. Точка К лежит на CL. Сделаем рисунок. На стороне ВС отложим длину СМ=АС. Соединим К и М. Треугольники АСК и МСК равны по двум сторонам и углу между ними. КМ=АК По условию задачи ВС=АС+АК Тогда КМ= ВМ, и треугольник ВМК - равнобедренный. Угол КМС равен углу САК из доказанного выше равенства треугольников. Угол КМС - внешний угол при вершине М треугольника ВМК и равен сумме несмежных с ним внутренних углов. Так как углы КВМ и МКВ равны, ∠ КМС=2∠СВК, а значит, что и ∠САК равен 2∠СВК, что и требовалось доказать.
Точка К лежит на CL.
Сделаем рисунок.
На стороне ВС отложим длину СМ=АС.
Соединим К и М.
Треугольники АСК и МСК равны по двум сторонам и углу между ними. КМ=АК
По условию задачи ВС=АС+АК
Тогда КМ= ВМ, и треугольник ВМК - равнобедренный.
Угол КМС равен углу САК из доказанного выше равенства треугольников.
Угол КМС - внешний угол при вершине М треугольника ВМК и равен сумме несмежных с ним внутренних углов.
Так как углы КВМ и МКВ равны, ∠ КМС=2∠СВК, а значит, что и
∠САК равен 2∠СВК, что и требовалось доказать.