ответ:Сре́днее арифмети́ческое (в математике и статистике) — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины.
ответ: Из известных сегодня спутников, такого спутника нет.
Объяснение: Дано:
Диаметр Солнца D = 1,392*10^6 км
Диаметр Сатурна d = 116464 км
Расстояние от Солнца до Сатурна R = 1429394069 км
Найти расстояние от спутника Сатурна до планеты r - ?
Чтобы определить, какой спутник изображен на рисунке художника, надо найти расстояние (r) с которого наблюдаемый угловые диаметры Солнца и Сатурна будут одинаковыми (см. рисунок). Из подобия треугольников можно составить соотношение: D/(R + r) = d/r. Из этого уравнения r = d*R/(D – d) = 116464*1429394069/(1392000 – 116464) = 130512153,99 км.
Из известных сегодня спутников Сатурна ни один спутник не находится так далеко от планеты. Самый дальний из известных спутников находится на расстоянии 25108000 км. . Это расстояние в 5,198 раз меньше найденного расстояния r. Следовательно, с самого дальнего из известных спутников Сатурна угловой диаметр Сатурна будет в 5 с лишнем раз больше углового диаметра Солнца. Таким образом, при написании картины художник ошибся в относительных угловых размерах Солнца и Сатурна.
ответ:Сре́днее арифмети́ческое (в математике и статистике) — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины.
Объяснение:
надеюсь ведь вопрос некоректный
ответ: Из известных сегодня спутников, такого спутника нет.
Объяснение: Дано:
Диаметр Солнца D = 1,392*10^6 км
Диаметр Сатурна d = 116464 км
Расстояние от Солнца до Сатурна R = 1429394069 км
Найти расстояние от спутника Сатурна до планеты r - ?
Чтобы определить, какой спутник изображен на рисунке художника, надо найти расстояние (r) с которого наблюдаемый угловые диаметры Солнца и Сатурна будут одинаковыми (см. рисунок). Из подобия треугольников можно составить соотношение: D/(R + r) = d/r. Из этого уравнения r = d*R/(D – d) = 116464*1429394069/(1392000 – 116464) = 130512153,99 км.
Из известных сегодня спутников Сатурна ни один спутник не находится так далеко от планеты. Самый дальний из известных спутников находится на расстоянии 25108000 км. . Это расстояние в 5,198 раз меньше найденного расстояния r. Следовательно, с самого дальнего из известных спутников Сатурна угловой диаметр Сатурна будет в 5 с лишнем раз больше углового диаметра Солнца. Таким образом, при написании картины художник ошибся в относительных угловых размерах Солнца и Сатурна.