Пусть натуральные числа имеют вид x•10000 + 2006, где x € N. После вычеркивания последних цифр получим число x.
По условию, где n € N. Отсюда имеем, что должно быть натуральным числом, т. е. x - делитель числа 2006.
Число 2006 имеет делители: 1; 2; 17; 34; 59; 118; 2006.
Следовательно, имеются числа, отвечающие условию задачи: 12006; 22006; 172006; 342006; 592006; 1182006; 20062006.
По условию, где n € N. Отсюда имеем, что должно быть натуральным числом, т. е. x - делитель числа 2006.
Число 2006 имеет делители: 1; 2; 17; 34; 59; 118; 2006.
Следовательно, имеются числа, отвечающие условию задачи: 12006; 22006; 172006; 342006; 592006; 1182006; 20062006.