Решение.
Пусть событие A — наудачу составленное из 7 букв слово «функция», событие B — наудачу составленное из 7 букв слово «частота». Так как упорядочиваются два множества из 7 букв, то число всех исходов для событий A и B равно n = 7!. Событию A благоприятствует один исход m = 1, так как все буквы на красных карточках различны. Событию B благоприятствуют m = 2! • 2! исходов, так как буквы «а» и «т» встречаются дважды. Тогда P(A) = 1/7! , P(B) = 2! • 2! /7! , P(B) > P(A).
Пусть событие A — наудачу составленное из 7 букв слово «функция», событие B — наудачу составленное из 7 букв слово «частота». Так как упорядочиваются два множества из 7 букв, то число всех исходов для событий A и B равно n = 7!. Событию A благоприятствует один исход m = 1, так как все буквы на красных карточках различны. Событию B благоприятствуют m = 2! • 2! исходов, так как буквы «а» и «т» встречаются дважды. Тогда P(A) = 1/7! , P(B) = 2! • 2! /7! , P(B) > P(A).