В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Sofia2224
Sofia2224
16.10.2021 03:46 •  Другие предметы

Коническая воронка, радиус основания которой R, а высота H, наполнена водой. В воронку опущен тяжелый шар. Каким

Показать ответ
Ответ:
Катякатя2005
Катякатя2005
17.04.2019 00:50
Решение.
Мысленно проведем сечение через центр конуса. Данное сечение образует равнобедренный треугольник.

Если в воронке находится шар, то максимальный размер его радиуса будет равен радиусу вписанной в получившийся равнобедренный треугольник окружности.

Радиус вписанной в треугольник окружности равен:
r = S / p, где
S - площадь треугольника
p - его полупериметр

Площадь равнобедренного треугольника равна половине высоты, умноженной на основание. Но, поскольку, основание - удвоенный радиус конуса, то
S = RH

Полупериметр равен
p = 1/2 ( 2R + 2m)
m - длина каждой из равных сторон равнобедренного треугольника
R - радиус окружности,  составляющей основание конуса

m найдем по теореме Пифагора как m = √( H2 + R2 ), откуда

p = 1/2 ( 2R + 2√( H2 + R2 ) ) = R + √( H2 + R2 )
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота