выносим общий множитель 15
15 (2^(x+1) + 2^(2-x)=135
2*2^x+4/2^x=9
Ввожу замену, пусть 2^х (2 в степени х) = К, тогда
2к+4/к-9=0
Домножу на к, т.к. оно у нас положительно при любом х
2к^2+4-9к=0
Д=7^2
к1=(-4+7)/4=3/4
к2=(-4-7)/4=-11/4
Обратная замена
2^х=3/4
х=log2 3/4 (логарифм 3/4 по основанию 2)
2^x=-11/4
х=log2 (-11/4) нет решений
ответ: х=log2 3/4
Решение========================>>
выносим общий множитель 15
15 (2^(x+1) + 2^(2-x)=135
2*2^x+4/2^x=9
Ввожу замену, пусть 2^х (2 в степени х) = К, тогда
2к+4/к-9=0
Домножу на к, т.к. оно у нас положительно при любом х
2к^2+4-9к=0
Д=7^2
к1=(-4+7)/4=3/4
к2=(-4-7)/4=-11/4
Обратная замена
2^х=3/4
х=log2 3/4 (логарифм 3/4 по основанию 2)
2^x=-11/4
х=log2 (-11/4) нет решений
ответ: х=log2 3/4
Решение========================>>