1) Так как прямая а не касается окружности, то она пересекает окружность в двух точках.
В ΔАОС:
ОВ — медиана (т.к. АВ = ВС (по условию)) и высота (т.к. ОВ ⊥ а (по условию)). Значит, ΔАОС — равнобедренный. Таким образом, ОА = ОС и таким образом точка С принадлежит окружности.
2) Пусть прямая а имеет с окружностью только одну общую точку А, но не является касательной, т.е. не перпендикулярна радиусу ОА, таким образом, из точки О можно провести к прямой перпендикуляр ОВ, не совпадающий с ОА. На продолжении отрезка АВ отложим отрезок ВС, равный отрезку АВ. Тогда, из п. 1, точки А и С лежат на окружности. Противоречие, т.к. по условию прямая а имеет с окружностью только одну общую точку.
3) Если две окружности касаются в некоторой точке А, то они имеют общую касательную в этой точке.
Пусть точки О1, О, А не лежат на одной прямой, тогда имеем ΔOO1A. Прямая ОО1 разбивает плоскость на две полуплоскости,
в одной из которых лежит точка А. ΔОО1А = ΔОО1А1 по 1-му признаку. От луча О1О отложим в другую полуплоскость ∠А1О1О = ∠АО1О и на нем отложим отрезок ОА1 = ОА. ОА = ОА1, О1А = О1А1, откуда точка А1 является общей точкой обеих окружностей. Противоречие. По условию окружности имеют только одну точку пересечения. Таким образом, точки О, О1, А лежат на одной прямой.
Через точку А проведем прямую а, а ⊥ ОА. Таким образом, а — касательная к первой окружности. Так как точки О, О1, А лежат на одной прямой, то О1А ⊥ а. Таким образом, а — касательная ко второй окружности. Откуда получаем, что окружности
касаются в точке А.
В ΔАОС:
ОВ — медиана (т.к. АВ = ВС (по условию)) и высота (т.к. ОВ ⊥ а (по условию)). Значит, ΔАОС — равнобедренный. Таким образом, ОА = ОС и таким образом точка С принадлежит окружности.
2) Пусть прямая а имеет с окружностью только одну общую точку А, но не является касательной, т.е. не перпендикулярна радиусу ОА, таким образом, из точки О можно провести к прямой перпендикуляр ОВ, не совпадающий с ОА. На продолжении отрезка АВ отложим отрезок ВС, равный отрезку АВ. Тогда, из п. 1, точки А и С лежат на окружности. Противоречие, т.к. по условию прямая а имеет с окружностью только одну общую точку.
3) Если две окружности касаются в некоторой точке А, то они имеют общую касательную в этой точке.
Пусть точки О1, О, А не лежат на одной прямой, тогда имеем ΔOO1A. Прямая ОО1 разбивает плоскость на две полуплоскости,
в одной из которых лежит точка А. ΔОО1А = ΔОО1А1 по 1-му признаку. От луча О1О отложим в другую полуплоскость ∠А1О1О = ∠АО1О и на нем отложим отрезок ОА1 = ОА. ОА = ОА1, О1А = О1А1, откуда точка А1 является общей точкой обеих окружностей. Противоречие. По условию окружности имеют только одну точку пересечения. Таким образом, точки О, О1, А лежат на одной прямой.
Через точку А проведем прямую а, а ⊥ ОА. Таким образом, а — касательная к первой окружности. Так как точки О, О1, А лежат на одной прямой, то О1А ⊥ а. Таким образом, а — касательная ко второй окружности. Откуда получаем, что окружности
касаются в точке А.