Пусть наклонные проведены из точки А и пересекают плоскость в точках В и С. Перпендикуляр, опущенный их точки А на плоскость пересекает её в точке Д. Поскольку наклонные АС и АВ образуют одинаковые углы с перпендикуляром АД, то они равны между собой. Обозначим их АВ = АС = х.
Поскольку наклонные АС и АВ одинаковые, то и проекции их ДВ и ДС одинаковые и равны: ДВ =ДС = х·sin45° = x/√2
Плоскость, образованная наклонными пересекает плоскость по прямой ВС. треугольник АВС - равнобедренный, т.к. АВ = АС, имеет угол при вершине 60°, следовательно два другие угла равны (180° - 60°):2 = 60°. И тр-к АВС равносторонний. Тогда ВС = АВ = АС = х.
Применив к тр-ку ВДС теорему косинусов, найдём угол между проекциями ДВ и ДС, обозначив его α.
Пусть наклонные проведены из точки А и пересекают плоскость в точках В и С. Перпендикуляр, опущенный их точки А на плоскость пересекает её в точке Д. Поскольку наклонные АС и АВ образуют одинаковые углы с перпендикуляром АД, то они равны между собой. Обозначим их АВ = АС = х.
Поскольку наклонные АС и АВ одинаковые, то и проекции их ДВ и ДС одинаковые и равны: ДВ =ДС = х·sin45° = x/√2
Плоскость, образованная наклонными пересекает плоскость по прямой ВС. треугольник АВС - равнобедренный, т.к. АВ = АС, имеет угол при вершине 60°, следовательно два другие угла равны (180° - 60°):2 = 60°. И тр-к АВС равносторонний. Тогда ВС = АВ = АС = х.
Применив к тр-ку ВДС теорему косинусов, найдём угол между проекциями ДВ и ДС, обозначив его α.
ВС² = ДВ² + ДС² - 2ДВ·ДС·cos α
x² = (x/√2)² + (x/√2)² - 2(x/√2)·(x/√2)·cos α
x² = 0.5x² + 0.5x² - 2·0.5x²·cos α
1 = 0.5 + 0.5 - cos α
cos α = 0
α = 90°