Процесс формирования первых органических соединений на Земле называют химической эволюцией. Она предшествовала биологической эволюции. Этапы химической эволюции были выделены А. И. Опариным. III этап зарождения химических элементов– появление коацерватов (от лат. coacervus – сгусток, куча) . Молекулы белков, обладающие амфотерностью, при определенных условиях могут самопроизвольно концентрироваться и образовывать коллоидные комплексы, которые получили название коацерватов. Коацерватные капли — это сгустки подобно водным растворам желатина. Образуются в концентрированных растворах белков и нуклеиновых кислот. Коацерваты адсорбировать различные вещества. Из раствора в них поступают химические соединения, которые преобразуются в результате реакций, проходящих в коацерватных каплях, и выделяются в окружающую среду. Коацерваты имеют важное значение в ряде гипотез о происхождении жизни на Земле. Коацерваты в таких гипотезах представляют некие праорганизмы (протоорганизмы) . Каждая молекула имеет определенную структурную организацию (атомы, входящие в ее состав, закономерно расположены в пространстве) . Вследствие этого в разноатомных молекулах образуются полюсы с различными зарядами. Например, молекула воды H2O образует диполь, в котором одна часть молекулы несет положительный заряд, а другая — отрицательный. Кроме этого, некоторые молекулы (например, соли) в водной среде диссоциируют на ионы. В силу таких особенностей химической организации вокруг молекул образуются водные «рубашки» из определенным образом ориентированных молекул воды. Молекулы, окруженные водной «рубашкой» , могут объединяться, образуя многомолекулярные комплексы — коацерваты. Коацерватные капли возникают также при простом смешивании разнообразных полимеров. При этом полимерные молекулы «собираются» в многомолекулярные фазово-обособленные образования. Подробнее о зарождении жизни на Земле читайте здесь: http://www.agrojour.ru/nauka/biologiya/vozniknovenie-zhizni-na-zemle.html
Свойства генов. На основании знакомства с примерами наследования признаков при моно- и дигибридном скрещивании может сложиться впечатление, что генотип организма слагается из суммы отдельных, независимо действующих генов, каждый из которых определяет развитие только своего признака или свойства. Такое представление о прямой и однозначной связи гена с признаком чаще всего не соответствует действительности. На самом деле существует огромное количество признаков и свойств живых организмов, которые определяются двумя и более парами генов, и наоборот, один ген часто контролирует многие признаки. Кроме того, действие гена может быть изменено соседством других генов и условиями внешней среды. Таким образом, в онтогенезедействуют не отдельные гены, а весь генотип как целостная система со сложными связями и взаимодействиями между ее компонентами. Эта система динамична: появление в результате мутаций новых аллелей или генов, формирование новых хромосом и даже новых геномов приводит к заметному изменению генотипа во времени.
Характер проявления действия гена в составе генотипа как системы может изменяться в различных ситуациях и под влиянием различных факторов. В этом можно легко убедится, если рассмотреть свойства генов и особенности их проявления в признаках:
Полимерные гены могут действовать и по типу кумулятивной полимерии. Чем больше подобных генов в генотипе организма, тем сильнее проявление данного признака, т. е. с увеличением дозы гена (А1 А2 А3 и т. д.) его действие суммируется, или кумулируется. Например, интенсивность окраски эндосперма зерен пшеницы пропорциональна числу доминантных аллелей разных генов в тригибридном скрещивании. Наиболее окрашенными были зерна А1А1А2А2А3,А 3 а зерна а1а1а2a2а3а 3 не имели пигмента.
По типу кумулятивной полимерии наследуются многие признаки: молочность, яйценоскость, масса и другие признаки сельскохозяйственных животных; многие важные параметры физической силы, здоровья и умственных человека; длина колоса у злаков; содержание сахара в корнеплодах сахарной свеклы или липидов в семенах подсолнечника и т. д.
Таким образом, многочисленные наблюдения свидетельствуют о том, что проявление большей части признаков представляет собой результат влияния комплекса взаимодействующих генов и условий внешней среды на формирование каждого конкретного признака.
III этап зарождения химических элементов– появление коацерватов (от лат. coacervus – сгусток, куча) . Молекулы белков, обладающие амфотерностью, при определенных условиях могут самопроизвольно концентрироваться и образовывать коллоидные комплексы, которые получили название коацерватов.
Коацерватные капли — это сгустки подобно водным растворам желатина. Образуются в концентрированных растворах белков и нуклеиновых кислот. Коацерваты адсорбировать различные вещества. Из раствора в них поступают химические соединения, которые преобразуются в результате реакций, проходящих в коацерватных каплях, и выделяются в окружающую среду.
Коацерваты имеют важное значение в ряде гипотез о происхождении жизни на Земле. Коацерваты в таких гипотезах представляют некие праорганизмы (протоорганизмы) .
Каждая молекула имеет определенную структурную организацию (атомы, входящие в ее состав, закономерно расположены в пространстве) . Вследствие этого в разноатомных молекулах образуются полюсы с различными зарядами. Например, молекула воды H2O образует диполь, в котором одна часть молекулы несет положительный заряд, а другая — отрицательный. Кроме этого, некоторые молекулы (например, соли) в водной среде диссоциируют на ионы.
В силу таких особенностей химической организации вокруг молекул образуются водные «рубашки» из определенным образом ориентированных молекул воды. Молекулы, окруженные водной «рубашкой» , могут объединяться, образуя многомолекулярные комплексы — коацерваты. Коацерватные капли возникают также при простом смешивании разнообразных полимеров. При этом полимерные молекулы «собираются» в многомолекулярные фазово-обособленные образования.
Подробнее о зарождении жизни на Земле читайте здесь: http://www.agrojour.ru/nauka/biologiya/vozniknovenie-zhizni-na-zemle.html
Свойства генов. На основании знакомства с примерами наследования признаков при моно- и дигибридном скрещивании может сложиться впечатление, что генотип организма слагается из суммы отдельных, независимо действующих генов, каждый из которых определяет развитие только своего признака или свойства. Такое представление о прямой и однозначной связи гена с признаком чаще всего не соответствует действительности. На самом деле существует огромное количество признаков и свойств живых организмов, которые определяются двумя и более парами генов, и наоборот, один ген часто контролирует многие признаки. Кроме того, действие гена может быть изменено соседством других генов и условиями внешней среды. Таким образом, в онтогенезедействуют не отдельные гены, а весь генотип как целостная система со сложными связями и взаимодействиями между ее компонентами. Эта система динамична: появление в результате мутаций новых аллелей или генов, формирование новых хромосом и даже новых геномов приводит к заметному изменению генотипа во времени.
Характер проявления действия гена в составе генотипа как системы может изменяться в различных ситуациях и под влиянием различных факторов. В этом можно легко убедится, если рассмотреть свойства генов и особенности их проявления в признаках:
Полимерные гены могут действовать и по типу кумулятивной полимерии. Чем больше подобных генов в генотипе организма, тем сильнее проявление данного признака, т. е. с увеличением дозы гена (А1 А2 А3 и т. д.) его действие суммируется, или кумулируется. Например, интенсивность окраски эндосперма зерен пшеницы пропорциональна числу доминантных аллелей разных генов в тригибридном скрещивании. Наиболее окрашенными были зерна А1А1А2А2А3,А 3 а зерна а1а1а2a2а3а 3 не имели пигмента.
По типу кумулятивной полимерии наследуются многие признаки: молочность, яйценоскость, масса и другие признаки сельскохозяйственных животных; многие важные параметры физической силы, здоровья и умственных человека; длина колоса у злаков; содержание сахара в корнеплодах сахарной свеклы или липидов в семенах подсолнечника и т. д.
Таким образом, многочисленные наблюдения свидетельствуют о том, что проявление большей части признаков представляет собой результат влияния комплекса взаимодействующих генов и условий внешней среды на формирование каждого конкретного признака.