Часто пол определяется по наличию или отсутствию в генотипе гетероморфной хромосомы Y *(или W). При таком типе определения пола Y-хромосома активна и играет важнейшую роль в проявлении признаков пола. В коротком плече Y-хромосомы лежит ген S. Он кодирует белок, который переключает организм с женского пути развития на мужской. Этот белок-регулятор в норме образует комплекс с гормоном тестостероном и тем самым стимулирует функционирование ряда структурных генов, ответственных за развитие мужских вторичных половых признаков. Мутантный ген вырабатывает белок, который не реагирует с тестостероном, а, следовательно, нарушается дифференцировка особи по типу самца. Поскольку в большинстве случаев именно у самок Х-хромосомы парные, в результате мейоза у них будут образовываться одинаковые яйцеклетки, каждая с одной Х-хромосомой. Пол, производящий одинаковые гаметы в отношении половых хромосом, называют гомогаметным, разные гаметы – гетерогаметным. Таким образом, у человека гетерогаметен мужской пол. Подобный тип определения пола найден у всех млекопитающих, двукрылых насекомых, некоторых рыб. Гетерогаметность не всегда присуща именно мужскому полу. Например, у птиц, некоторых рыб и бабочек гетерогаметным является женский пол, а гомогаметным – мужской. В данном случае парные половые хромосомы принято обозначать буквой Z, гетерохромосому – W. Яйцеклетки у них двух типов – с Z- и W-хромосомами, а сперматозоиды несут только Z-хромосому. Поэтому ответ ХХ
Для исследования строения клетки, ее органоидов и составных частей успешно применяются традиционные микроскопические методы. Главным методическим приемом при изучении клеток остаемся визуальное наблюдение, в том числе их прижизненное (витальное) исследование. Кроме визуальных наблюдений с светового микроскопа используют разные объективные методы регистрации клеточного строения: микрофотографирование, цитофотометрию, микроспектрофотометр ню, микрокиносъемку и др. С микрохимических (цитохимических) методов определяют локализацию и количественное содержание отдельных химических веществ по специальным цветным реакциям непосредственно в клетке. Кроме обыкновенной микроскопии в видимых лучах используют также люминесцентную (флуоресцентную) и ультрафиолетовую микроскопию. При этом препараты освещают сине-фиолетовыми или ультрафиолетовыми лучами, которые вызывают свечение (флуоресценцию) многих органических веществ клетки (пигментов, витаминов, алкалоидов, дубильных или других высокомолекулярных соединений). Применяют также специфические красители флуорохромы. Флуорохромы образуют флуоресцирующие комплексы с теми веществами клеток, которые не к естественной флуоресценции. При микроскопическим исследовании флуоресцирующих препаратов обнаруживают такие детали и тонкости строения, размещение и количество отдельных компонентов клеток, которые недоступны обыкновенной микроскопии. Перечисленные разновидности микроскопии позволяют эффективно исследовать живые, не фиксированные или слегка окрашенные клетки и препараты. Используют также другие виды световой микроскопии -интерференционную, фазово-контрастную, поляризационную, а также их сочетания и модификации. Для большей контрастности и четкости отдельных клеточных структур и органоидов применяют окрашивание фиксированных препаратов специфическими красителями (фуксином, пиронином, гематоксилином, метиленовым синим), которые избирательно адсорбируются цитоплазмой, ядром, митохондриями, хромосомами, что облегчает их обнаружение, наблюдение и исследование.
хх
Объяснение:
Часто пол определяется по наличию или отсутствию в генотипе гетероморфной хромосомы Y *(или W). При таком типе определения пола Y-хромосома активна и играет важнейшую роль в проявлении признаков пола. В коротком плече Y-хромосомы лежит ген S. Он кодирует белок, который переключает организм с женского пути развития на мужской. Этот белок-регулятор в норме образует комплекс с гормоном тестостероном и тем самым стимулирует функционирование ряда структурных генов, ответственных за развитие мужских вторичных половых признаков. Мутантный ген вырабатывает белок, который не реагирует с тестостероном, а, следовательно, нарушается дифференцировка особи по типу самца. Поскольку в большинстве случаев именно у самок Х-хромосомы парные, в результате мейоза у них будут образовываться одинаковые яйцеклетки, каждая с одной Х-хромосомой. Пол, производящий одинаковые гаметы в отношении половых хромосом, называют гомогаметным, разные гаметы – гетерогаметным. Таким образом, у человека гетерогаметен мужской пол. Подобный тип определения пола найден у всех млекопитающих, двукрылых насекомых, некоторых рыб. Гетерогаметность не всегда присуща именно мужскому полу. Например, у птиц, некоторых рыб и бабочек гетерогаметным является женский пол, а гомогаметным – мужской. В данном случае парные половые хромосомы принято обозначать буквой Z, гетерохромосому – W. Яйцеклетки у них двух типов – с Z- и W-хромосомами, а сперматозоиды несут только Z-хромосому. Поэтому ответ ХХ
С микрохимических (цитохимических) методов определяют локализацию и количественное содержание отдельных химических веществ по специальным цветным реакциям непосредственно в клетке.
Кроме обыкновенной микроскопии в видимых лучах используют также люминесцентную (флуоресцентную) и ультрафиолетовую микроскопию. При этом препараты освещают сине-фиолетовыми или ультрафиолетовыми лучами, которые вызывают свечение (флуоресценцию) многих органических веществ клетки (пигментов, витаминов, алкалоидов, дубильных или других высокомолекулярных соединений). Применяют также специфические красители флуорохромы. Флуорохромы образуют флуоресцирующие комплексы с теми веществами клеток, которые не к естественной флуоресценции. При микроскопическим исследовании флуоресцирующих препаратов обнаруживают такие детали и тонкости строения, размещение и количество отдельных компонентов клеток, которые недоступны обыкновенной микроскопии. Перечисленные разновидности микроскопии позволяют эффективно исследовать живые, не фиксированные или слегка окрашенные клетки и препараты. Используют также другие виды световой микроскопии -интерференционную, фазово-контрастную, поляризационную, а также их сочетания и модификации.
Для большей контрастности и четкости отдельных клеточных структур и органоидов применяют окрашивание фиксированных препаратов специфическими красителями (фуксином, пиронином, гематоксилином, метиленовым синим), которые избирательно адсорбируются цитоплазмой, ядром, митохондриями, хромосомами, что облегчает их обнаружение, наблюдение и исследование.