ОДЗ {x²-x-3>0 {2x²+x-3>0 {x²-2≠0 1)x²-x-3>0 D=1+12=13 x1=(1-√13)/2 U x2=(1+√13)/2 x<(1-√13)/2 U x>(1+√13)/2 2)2x²+x-3>0 D=1+24=25 x1=(-1-5)4=-1,5 U x=(-1+5)/4=1 x<-1,5 U x>1 3)x²-2≠0 x²≠2 x≠-√2 U x≠√2 x∈(-∞;-1,5) U ((1+√13)/2;∞) log(3)[(x²-x-3)(2x²+x-3)/(x²-2)²]≥log(3)(9/4) [(x²-x-3)(2x²+x-3)/(x²-2)²]≥9/4 [(x²-x-3)(2x²+x-3)/(x²-2)²]-9/4≥0 (8x^4+4x³-12x²-8x³-4x²+12x-24x²+-12x+36-9x^4+36x²-36)/4(x²-2)²≥0 (-x^4-4x³-4x²)/4(x²-2)²≥0 -x²(x²+4x+4)/4(x²-2)²≥0 x²(x+2)²/4(x²-2)²≤0 x=0∉ОДЗ x=-2∉ОДЗ ответ нет решения
Пусть х км/ч - собственная скорость лодки в стоячей воде, у км/ч - скорость течения реки, Значит, (х+у) км/ч - скорость лодки по течению реки, (х-у) км/ч - скорость лодки против течения реки. По условию задачи, известно, что лодка, за 5 ч по течению тот же путь, что за 7 часов против течения реки. Составляем уравнение: 5(x+y)=7(x-y) 5x+5y=7x-7y 5y+7y=7x-5x 12y=2x 6y=x Итак, х+у=6у+у=7у - скорость лодки по течению реки, х-у =6у-у=5у - скорость лодки против течения реки. Тогда 63/7у = 9/у час - время лодки на движение по течению реки, 45/5у =9/у час - время лодки на движение против течения реки. По условию задачи, на весь путь лодка затратила 6 часов. Составим уравнение: 9/у + 9/у = 6 (2*9)/у=6 18/у=6 у=18/6 у=3 (км/ч) - скорость течения реки х=6*3=18 (км/ч) - собственная скорость лодки
{x²-x-3>0
{2x²+x-3>0
{x²-2≠0
1)x²-x-3>0
D=1+12=13
x1=(1-√13)/2 U x2=(1+√13)/2
x<(1-√13)/2 U x>(1+√13)/2
2)2x²+x-3>0
D=1+24=25
x1=(-1-5)4=-1,5 U x=(-1+5)/4=1
x<-1,5 U x>1
3)x²-2≠0
x²≠2
x≠-√2 U x≠√2
x∈(-∞;-1,5) U ((1+√13)/2;∞)
log(3)[(x²-x-3)(2x²+x-3)/(x²-2)²]≥log(3)(9/4)
[(x²-x-3)(2x²+x-3)/(x²-2)²]≥9/4
[(x²-x-3)(2x²+x-3)/(x²-2)²]-9/4≥0
(8x^4+4x³-12x²-8x³-4x²+12x-24x²+-12x+36-9x^4+36x²-36)/4(x²-2)²≥0
(-x^4-4x³-4x²)/4(x²-2)²≥0
-x²(x²+4x+4)/4(x²-2)²≥0
x²(x+2)²/4(x²-2)²≤0
x=0∉ОДЗ
x=-2∉ОДЗ
ответ нет решения
у км/ч - скорость течения реки,
Значит, (х+у) км/ч - скорость лодки по течению реки,
(х-у) км/ч - скорость лодки против течения реки.
По условию задачи, известно, что лодка, за 5 ч по течению тот же путь, что за 7 часов против течения реки.
Составляем уравнение:
5(x+y)=7(x-y)
5x+5y=7x-7y
5y+7y=7x-5x
12y=2x
6y=x
Итак, х+у=6у+у=7у - скорость лодки по течению реки,
х-у =6у-у=5у - скорость лодки против течения реки.
Тогда 63/7у = 9/у час - время лодки на движение по течению реки,
45/5у =9/у час - время лодки на движение против течения реки.
По условию задачи, на весь путь лодка затратила 6 часов.
Составим уравнение:
9/у + 9/у = 6
(2*9)/у=6
18/у=6
у=18/6
у=3 (км/ч) - скорость течения реки
х=6*3=18 (км/ч) - собственная скорость лодки