1) Найти уравнение стороны ВС, её нормальный вектор и угловой коэффициент. , это уравнение в каноническом виде. Знаменатели в этом уравнении - это координаты направляющего вектора: направляющий вектор . Чтобы найти угловой коэффициент, надо уравнение из канонического вида преобразовать в уравнение с коэффициентом: -6х + 42 = -8у - 48, 6х - 8у - 90 = 0 или, сократив на 2: 3х - 4у - 45 = 0 это общий вид уравнения. Теперь выразим относительно у: у = (3/4)х - (45/4) это уравнение с коэффициентом . Угловой коэффициент уравнения стороны равен ВС 3/4. Его можно определить по координатам точек: Квс = (Ус-Ув) / (Хс-Хв). Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой. Нормальный вектор (3;-4).
2) Найти точку пересечения медианы, опущенной из вершины А, и высоты, опущенной из вершины В. Для этого надо найти уравнения этих прямых и решить полученную систему. Находим координаты точки М (основание медианы АМ) как середину стороны ВС: М((7-1)/2=3; (-6-12)/2=-9. Отсюда находим уравнение медианы АМ:
Находим уравнение высоты из точки В(7;-6) как перпендикуляра (нормали) к стороне АС.
Уравнение
Или в общем виде
Нормальный вектор стороны АС , а для высоты ВН он будет направляющим:
Уравнение высоты
Или в общем виде: -х + 7 = 7у + 42,
х + 7у + 35 = 0.
3) Уравнение прямой, проходящей через точку А параллельно стороне ВС имеет вид 3х - 4у - С = 0, так как уравнение ВС: 3х - 4у - 45 = 0. Подставим координаты точки А: 3*1 - 4*2 - С = 0, отсюда С = 3-8 = -5. Тогда искомое уравнение 3х - 4у + 5 = 0.
Не едит, а едет.
Пусть х - скорость второго.
Тогда х+20 - скорость первого.
240/х - время, потраченное на пробег вторым автомобилем.
240/(х+20) - время, потраченное на пробег первым автомобилистом.
Уравнение:
240/х - 240/(х+20) = 1
Умножаем каждый член уравнения на х(х+20):
240(х+20) - 240х = 1•х(х+20)
240х + 4800 - 240х = х^2 + 20х
х^2 + 20х - 4800 = 0
D = 20^2 -4•(-4800) =
= 400 + 1920 = 19600
√D= √(19600) = 140
х1 = (-20 -140)/2 = -160/2=-80 км/ч - не подходит, поскольку скорость - величина положительная.
х2 = (-20+140)/2 = 120/2= 60 км/ч - скорость второго автомобиля.
х+20= 60+20 = 80 км/ч - скорость первого автомобиля.
ответ: 80 км/ч
1) Найти уравнение стороны ВС, её нормальный вектор и угловой коэффициент.
,
это уравнение в каноническом виде.
Знаменатели в этом уравнении - это координаты направляющего вектора: направляющий вектор .
Чтобы найти угловой коэффициент, надо уравнение из канонического вида преобразовать в уравнение с коэффициентом:
-6х + 42 = -8у - 48,
6х - 8у - 90 = 0 или, сократив на 2:
3х - 4у - 45 = 0 это общий вид уравнения.
Теперь выразим относительно у:
у = (3/4)х - (45/4) это уравнение с коэффициентом .
Угловой коэффициент уравнения стороны равен ВС 3/4.
Его можно определить по координатам точек:
Квс = (Ус-Ув) / (Хс-Хв).
Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.
Нормальный вектор (3;-4).
2) Найти точку пересечения медианы, опущенной из вершины А, и высоты, опущенной из вершины В.
Для этого надо найти уравнения этих прямых и решить полученную систему.
Находим координаты точки М (основание медианы АМ) как середину стороны ВС: М((7-1)/2=3; (-6-12)/2=-9.
Отсюда находим уравнение медианы АМ:
Находим уравнение высоты из точки В(7;-6) как перпендикуляра (нормали) к стороне АС.
Уравнение
Или в общем виде
Нормальный вектор стороны АС , а для высоты ВН он будет направляющим:
Уравнение высоты
Или в общем виде: -х + 7 = 7у + 42,
х + 7у + 35 = 0.
3) Уравнение прямой, проходящей через точку А параллельно стороне ВС имеет вид 3х - 4у - С = 0, так как уравнение ВС: 3х - 4у - 45 = 0.Подставим координаты точки А: 3*1 - 4*2 - С = 0, отсюда С = 3-8 = -5.
Тогда искомое уравнение 3х - 4у + 5 = 0.