Пусть x - количество монет в мешке, а значит в сундуке: 3x монет. После того, как из мешка переложили 24 монеты, в сундуке стало: 3x+24, а в мешке x−24. И если в сундуке их стало в 7 раз больше чем в мешке, то имеем: 3x+24=7(x−24).
Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно x и записать ответ.
Решим полученное уравнение: 3x+24=7(x−24). Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)
Раскроем скобки в правой части уравнения: 3x+24=7x−7⋅24. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит x в левую, получим: 24+7⋅24=7x−3x. После упрощения получили 192=4x, разделим обе части уравнения на коэффициент при неизвестном, т.е на 4, тогда получим x=48.
За переменную x мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е 3x.
В мешке 48 В сундуке 144
Объяснение:
Пусть x - количество монет в мешке, а значит в сундуке: 3x монет. После того, как из мешка переложили 24 монеты, в сундуке стало: 3x+24, а в мешке x−24. И если в сундуке их стало в 7 раз больше чем в мешке, то имеем: 3x+24=7(x−24).
Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно x и записать ответ.
Решим полученное уравнение: 3x+24=7(x−24). Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)
Раскроем скобки в правой части уравнения: 3x+24=7x−7⋅24. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит x в левую, получим: 24+7⋅24=7x−3x. После упрощения получили 192=4x, разделим обе части уравнения на коэффициент при неизвестном, т.е на 4, тогда получим x=48.
За переменную x мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е 3x.
Монет в мешке: 48
Монет в сундуке: 48⋅3=144
6x(x^2-4)=0
6x(x-2)(x+2)=0
6x=0 или x-2=0 или x+2=0
x=0 x=2 x=-2
ответ:x=0
x=2
x=-2
б). 25x^3- 10x^2 +x =0
x(25x^2-10x+1)=0
x(5x-1)^2=0
x=0 или (5x-1)^2=0
5x-1=0
5x=1
x=1/5
ответ:x=0
x=1/5
в). 2x^4 + 6x^3 – 8x^2- 24x = 0
2x^2(x^2-4)+6x(x^2-4)=0
(2x^2+6x)(x^2-4)=0
2x(x-2)(x+2)(x+3)=0
2x=0 или x-2=0 или x+2=0 или x+3=0
x=0 x=2 x=-2 x=-3
ответ:x=0
x=2
x=-2
x=-3