Чему равна сумма всех различных значений параметра b, при которых уравнение (b+1)x^2 + 9x + b - 5 = 0 имеет единственный корень? Запишем два условие при которых уравнение (b+1)x^2 + 9x + b - 5 = 0 имеет один корень 1. При b+1=0 или b = -1 уравнение (b+1)x^2 + 9x + b - 5 = 0 превращается в уравнение 9х+ b - 5 =0 которое имеет один корень х = (5 - b)/9 2. При b=/=-1 уравнение (b+1)x^2 + 9x + b - 5 = 0 имеет один корень при D =0 D = 81-4(b-5)(b+1) =81-4(b^2 - 4b - 5) = 101 - 4b^2 + 16b D = 0 или 101 - 4b^2 + 16b =0 4b^2 - 16b - 101 =0 D = 256 + 1616 = 1872 b1=(16-корень(1872)/8 = 2 - (3/2)корень(13) b2 = (16+корень(1872)/8 = 2 + (3/2)корень(13) Получили три значения параметра b при которых уравнение имеет один корень. Сумма этих значений равна -1+ 2 - (3/2)корень(13) + 2 + (3/2)корень(13) = 3 ответ : 3
Запишем два условие при которых уравнение (b+1)x^2 + 9x + b - 5 = 0 имеет один корень
1. При b+1=0 или b = -1 уравнение (b+1)x^2 + 9x + b - 5 = 0
превращается в уравнение
9х+ b - 5 =0
которое имеет один корень
х = (5 - b)/9
2. При b=/=-1 уравнение (b+1)x^2 + 9x + b - 5 = 0
имеет один корень при
D =0
D = 81-4(b-5)(b+1) =81-4(b^2 - 4b - 5) = 101 - 4b^2 + 16b
D = 0 или 101 - 4b^2 + 16b =0
4b^2 - 16b - 101 =0
D = 256 + 1616 = 1872
b1=(16-корень(1872)/8 = 2 - (3/2)корень(13)
b2 = (16+корень(1872)/8 = 2 + (3/2)корень(13)
Получили три значения параметра b при которых уравнение имеет один корень.
Сумма этих значений равна
-1+ 2 - (3/2)корень(13) + 2 + (3/2)корень(13) = 3
ответ : 3
Постройте график квадратичной функции и опишите её свойства у=-2х²+8х-6
Объяснение:
у=-2х²+8х-6 ,это парабола ,ветви вниз ( -2<0).
1) Координаты вершины :
х₀=-в/2а, х₀=-8/(-2*2)=2 , у₀=-2*4+8*2-6=2, (2; 2).
2)Точки пересечения с осью ох ( у=0) ;
-2х²+8х-6 =0 , х²-4х-+3=0 , х₁=1 , х₂3 . Тогда ( 1;0) , (3;0).
3) Точки пересечения с осью оу(х=0);
у(0)=-2*0²+8*0-6 =-6 , Тогда ( 0; -6).
4) Доп.точки у=-2х²+8х-6 :
х: -1 4
у: -16 -6
Свойства функции у=-2х²+8х-6 :
а) Возрастает при х∈(-∞ ;2}, убывает при х∈[2 ;+∞).
б) Принимает положительные значения ( у>0) при х∈(1 ; 3) .
Принимает отрицательные значения (y<0) при х∈(-∞ ;1)∪(3 ;+∞).
Принимает значения равные нулю ( у=0) при х=1, 3.
в) Принимает наибольшее значение у=2 при х=2.