По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
Для такого задания есть два решения:
самый простой): проверить каждый вариант ответа, подставляя его вместо икса. Если получиться ноль, тогда это и есть корень уравнения.
При : (совпало)При : (совпало)При : (совпало).решить это уравнение, зная правило, что если при умножении чисел или выражений получается ноль, то хотя бы одно из них должно быть равно нулю:
(в вариантах ответа есть такой корень) (в вариантах ответа есть такой корень) (в вариантах ответа есть такой корень)ответ: корнем уравнения являются числа а) 7; б) -3; в) 0.
ответ: Подпишитесь на мой канал в ютубе
Объяснение:
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.