Преобразуем функцию перед построением графика: \frac{(x-7)(x^2-10x+9)}{x-9} = Разложим второй множитель на множители, для этого решим уравнение x²-10x+9=0 D=(-10)²-4*9=100-36=64=8² x= \frac{10-8}{2}=1 x= \frac{10+8}{2}=9 x²-10x+9=(x-1)(x-9) Подставляем y= \frac{(x-7)(x-1)(x-9)}{x-9} =(x-7)(x-1)=x^2-x-7x+7=x^2-8x+7 Получили квадратное уравнение графиком которого является парабола, ветви которой направлены вверх. Прямая у=m имеет одну общую точку с параболой только на вершине параболы, поэтому по графику это точка А(4;-9). Её же можно найти как координаты вершины параболы: x=-b/2a=8/2=4 y=4²-8*4+7=16-32+7=-9
(x-a)(x²-10x+9)=0 (x-a)(x-1)(x-9)=0 x₁=a; x₂=1; x₃=9 - корни уравнения составим из полученных корней все возможные последовательности: 1) 1, 9, а 2) 1, а, 9 3) а, 1, 9 4) а, 9, 1 5) 9, а, 1 6) 9, 1, а получено 6 последовательностей. убираем убывающие (4), (5), (6). получили три возрастающих последовательности. известно, что это арифметические прогрессии. находим значение а в каждой из них: 1) 1, 9, а d=9-1=8 => a=9+8=17 2) 1, a, 9 a=(1+9)/2=10/2=5 3) a, 1, 9 d=9-1=8 a=1-8=-7 итак, а равны 17, 5 и -7 x²-10x+9=0 корни уравнения находим по теореме виета: x₁*x₂=9 и x₁+x₂=10 => x₁=1, x₂=9 (x₁< x₂)
\frac{(x-7)(x^2-10x+9)}{x-9} =
Разложим второй множитель на множители, для этого решим уравнение
x²-10x+9=0
D=(-10)²-4*9=100-36=64=8²
x= \frac{10-8}{2}=1
x= \frac{10+8}{2}=9
x²-10x+9=(x-1)(x-9)
Подставляем
y= \frac{(x-7)(x-1)(x-9)}{x-9} =(x-7)(x-1)=x^2-x-7x+7=x^2-8x+7
Получили квадратное уравнение графиком которого является парабола, ветви которой направлены вверх. Прямая у=m имеет одну общую точку с параболой только на вершине параболы, поэтому по графику это точка А(4;-9). Её же можно найти как координаты вершины параболы:
x=-b/2a=8/2=4
y=4²-8*4+7=16-32+7=-9