Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=8 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*8+3*(-7)=11
8а-21=11
8а=11+21
8а=32
а=4
Решим графически систему уравнений:
4x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
4x + 3y = 11 5x +2y = 12
3у=11-4х 2у=12-5х
у=(11-4х)/3 у=(12-5х)/2
Таблицы:
х -1 2 5 х -2 0 2
у 5 1 -3 у 11 6 1
Согласно графика, координаты точки пересечения прямых (2; 1)
Координаты точки пересечения прямых (2; 1)
Решение системы уравнений (2; 1)
Объяснение:
Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=8 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*8+3*(-7)=11
8а-21=11
8а=11+21
8а=32
а=4
Решим графически систему уравнений:
4x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
4x + 3y = 11 5x +2y = 12
3у=11-4х 2у=12-5х
у=(11-4х)/3 у=(12-5х)/2
Таблицы:
х -1 2 5 х -2 0 2
у 5 1 -3 у 11 6 1
Согласно графика, координаты точки пересечения прямых (2; 1)
Решение системы уравнений (2; 1)
Графики такого вида строят методом преобразований.
Исходный график y=|x| ( рис.1)
График y=-|x| получен из него зеркальным отражением относительно оси Ох ( рис.2)
График y=-|x|+6 получен из графика y=-|x| сдвигом вдоль оси Оу на 6 единиц вверх (рис.3)
График y=|-|x|+6| получен из графика y=-|x|+6 зеркальным отражением относительно оси Ох которая расположена ниже оси Ох ( рис.4)
График y=-|-|x|+6| получен из графика y=|-|x|+6| зеркальным отражением относительно оси Ох ( рис.5)
Можно, конечно, раскрыть модуль на промежутках:
(-∞;-6]
y=-|-(-x)+6|=-|x+6|=-(-x-6)=x+6
(-6;0]
y=-|-(-x)+6|=-|x+6|=-(x+6)=-x-6
(0;6]
y=-|-(x)+6|=-|-x+6|=-(-(x-6))=x-6
(6;+∞)
y=-|-(x)+6|=-|-x+6|=-(x-6)=-x+6