Найдите наибольшее и наименьшее значения функции :
1) y = - x² - 3x - 6,25 = - 4 - ( x + 1,5 )²
2) y = - x² - x + 3,75 = 4 - ( x + 0,5 )²
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ответ: 1) max y = - 4 ; нет минимума
2) max y = 4 ; нет минимума
- - - - - - -
ни четные ,ни нечетные
Объяснение:
1)
y = - x² - 3x - 6,25 = - ( x² +2x*(3/2) +(3/2)² - (3/2)²) - 6,25 =
= 9/4 -6,25 - ( x +3/2 )² =2,25 - 6,25 - ( x +3/2 )² = - 4 - ( x +3/2 )².
max y = - 4 , если ( x +3/2 )²=0 , т.е. если x = -3/2 = -1,5 ;
не имеет наименьшее значения
2)
y = - x² - x +3,75 = 4 - ( x + 0,5 )²
* * * y = - x² - x +3,75 = - ( x² +2x*(1/2) + (1/2)² - (1/2)² ) + 3,75 =
- ( x + 1/2 )² + 1/4 +3,75 = 4 - ( x + 0,5 )² * * *
max y = 4 , если x = - 0,5
1) f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2) y = f(x) = √(x³ + x²) - 31*| x³ | , D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0⇒x ≥ -1
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( - ∞ ; - 1) * * *
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Найдите наибольшее и наименьшее значения функции :
1) y = - x² - 3x - 6,25 = - 4 - ( x + 1,5 )²
2) y = - x² - x + 3,75 = 4 - ( x + 0,5 )²
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ответ: 1) max y = - 4 ; нет минимума
2) max y = 4 ; нет минимума
- - - - - - -
ни четные ,ни нечетные
Объяснение:
1)
y = - x² - 3x - 6,25 = - ( x² +2x*(3/2) +(3/2)² - (3/2)²) - 6,25 =
= 9/4 -6,25 - ( x +3/2 )² =2,25 - 6,25 - ( x +3/2 )² = - 4 - ( x +3/2 )².
max y = - 4 , если ( x +3/2 )²=0 , т.е. если x = -3/2 = -1,5 ;
не имеет наименьшее значения
2)
y = - x² - x +3,75 = 4 - ( x + 0,5 )²
* * * y = - x² - x +3,75 = - ( x² +2x*(1/2) + (1/2)² - (1/2)² ) + 3,75 =
- ( x + 1/2 )² + 1/4 +3,75 = 4 - ( x + 0,5 )² * * *
max y = 4 , если x = - 0,5
не имеет наименьшее значения
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1) f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2) y = f(x) = √(x³ + x²) - 31*| x³ | , D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0⇒x ≥ -1
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( - ∞ ; - 1) * * *