На рисунке линейная функция, график которой проходит под тупым углом к положительному направлению оси OX, т.е. график проходит через II - IV координатные плоскости ⇒ k < 0.
⇒ ответ или 1) или 4)
Масштаб оси OX и оси OY совпадает (единичный отрезок = 2 клеткам). График пересекает каждую клетку по диагонали (делит угол 90° на два равных угла = 45°) ⇒ k = -1.
4) y = -x + 7
Объяснение:
Общий вид линейной функции y = kx + b
На рисунке линейная функция, график которой проходит под тупым углом к положительному направлению оси OX, т.е. график проходит через II - IV координатные плоскости ⇒ k < 0.
⇒ ответ или 1) или 4)
Масштаб оси OX и оси OY совпадает (единичный отрезок = 2 клеткам). График пересекает каждую клетку по диагонали (делит угол 90° на два равных угла = 45°) ⇒ k = -1.
⇒ ответ 4) y = -x + 7
Проверим по точкам:
по графику, если x = 3 , то y = 4.
y = -1*3 + 7 = -3 + 7 = 4 верно;
по графику, если x = 5 , то y = 2.
y = -1*5 + 7 = -5 + 7 = 2 верно.
Для построения прямой достаточно двух точек.
ответ 4) y = -x + 7
Объяснение:
3) (x^2 + 1/x^2) + 7(x - 1/x) + 10 = 0
Новая переменная y = x - 1/x, тогда
y^2 = (x - 1/x)^2 = x^2 - 2*x*1/x + 1/x^2
x^2 + 1/x^2 = y^2 + 2
Подставляем:
y^2 + 2 + 7y + 10 = 0
y^2 + 7y + 12 = 0
(y + 3)(y + 4) = 0
y1 = -3 = x - 1/x
x - 1/x + 3 = 0
x^2 + 3x - 1 = 0
D = 9 - 4(-1) = 13
x1 = (-3 - √13)/2; x2 = (-3 + √13)/2
y2 = -4 = x - 1/x
x - 1/x + 4 = 0
x^2 + 4x - 1 = 0
D = 16 - 4(-1) = 20
x3 = (-4 - √20)/2 = (-4 - 2√5)/2 = -2 - √5
x4 = (-4 + √20)/2 = (-4 + 2√5)/2 = -2 + √5
4) (x^2 + 4/x^2) - (x + 2/x) - 8 = 0
Замена y = x + 2/x, y^2 = x^2 + 2*x*2/x + 4/x^2
x^2 + 4/x^2 = y^2 - 4
y^2 - 4 - y - 8 = 0
y^2 - y - 12 = 0
(y - 4)(y + 3) = 0
y1 = -3 = x + 2/x
x + 2/x + 3 = 0
x^2 + 3x + 2 = 0
(x+1)(x+2) = 0
x1 = -1; x2 = -2
y2 = 4 = x + 2/x
x + 2/x - 4 = 0
x^2 - 4x + 2 = 0
D = 16 - 4*2 = 8
x3 = (4 - √8)/2 = (4 - 2√2)/2 = 2 - √2
x4 = (4 + √8)/2 = (4 + 2√2)/2 = 2 + √2