По методу математической индукции: 1) n=1,тогда 11+1=12-делится на 6 2)пусть n=k, тогда для всех k натуральных выполняется: 11k^3+k делится на 6. Докажем, что 11(k+1)^3 +k+1 делится на 6. 3) доказательство: 11*(k+1)^3+k+1= 11*(k^2+2k+1)*(k+1)+k+1= 11*(k^3+3*k^2+3*k+1)+k+1= 11*k^3+k+11*(3*k^2+3*k+1)+1= (11*k^3+k)-делится на 6, тогда: 33*k^2+33*k+12= 33*k(k+1) +12 Так как k- натуральное, то минимальное значение произведения 33*k(k+1)=66-делится на 6 В итоге, так как для того что бы выражение 33*k(k+1) делилось на 6,необходимо,что бы при любом k произведение k*(k+1) было четно, что и выполняется. Тогда, сумма 33*k(k+1)+12 делится на 6,т.к все слагаемые делятся на 6 Ч. Т. Д.
1) n=1,тогда 11+1=12-делится на 6
2)пусть n=k, тогда для всех k натуральных выполняется: 11k^3+k делится на 6. Докажем, что 11(k+1)^3 +k+1 делится на 6.
3) доказательство:
11*(k+1)^3+k+1= 11*(k^2+2k+1)*(k+1)+k+1=
11*(k^3+3*k^2+3*k+1)+k+1=
11*k^3+k+11*(3*k^2+3*k+1)+1=
(11*k^3+k)-делится на 6, тогда:
33*k^2+33*k+12=
33*k(k+1) +12
Так как k- натуральное, то минимальное значение произведения 33*k(k+1)=66-делится на 6
В итоге, так как для того что бы выражение 33*k(k+1) делилось на 6,необходимо,что бы при любом k произведение k*(k+1) было четно, что и выполняется. Тогда, сумма 33*k(k+1)+12 делится на 6,т.к все слагаемые делятся на 6
Ч. Т. Д.
task/29945456
Представить в виде произведения :
* * * cosα= cos(2*α/2)=cos²(α/2) - sin²(α/2) =2cos²(α/2) - 1 ⇒cos²(α/2)=(1+cosα)/2 * * *
* * * cosα= cos(2*α/2)=cos²(α/2)- sin²(α/2) =1 -2sin²(α/2) ⇒sin²(α/2)=(1+cosα)/2 * * *
1) 1+ cos6α =2cos²3α * * * 2cos3α* cos3α * * *
2) 1 - cos(α /4) =2sin²(α/8)
3) 1+cos100° =2cos²50°
4) 1 + cos(5α/2) =2cos²(5α/4)
5) 1 - sin(α/2) = 1 - cos(π/2 - α/2) =2sin²( (π/2 - α/2) /2 ) = 2sin² ( π/4 - α/4 ) .
6) 1+ sin(π/10) = 1 +cos(π/2 - π/10 ) = 1+cos(2π/5) =2cos² (π/5) .
2. Понизить степень выражения :
1) cos² (α/2 +φ) = ( 1+cos2(α/2 +φ) ) / 2 = ( 1+cos(α +2φ) ) / 2
2) sin² (π/10 - β) =( 1 -cos2(π/10 - β) ) / 2 = ( 1 -cos(π/5 - 2β) ) / 2