Y=ax^2+bx+c- уравнение параболы. Составим систему уравнений для нахождения коэфициентов a, b, c -b/(2a)=3 - абсцисса вершины 9a+3b+c=1 - подставили координаты точки А(3;1) a+b+c=3 - подставили координаты точки К(1;3). из первого уравнения системы имеем b=-6a. Подставим это выражение во второе и третье уравнения системы: 9a-18a+c=1 -9a+c=1 a-6a+c=3 -5a+c=3 Вычтем из второго уравнения первое и получим: 4а=2; а=0,5. с=3+5а=3+5*0,5=5,5. b=-6a=-6*0,5=-3. Уравнение параболы имеет вид: y=0,5х^2-3x+5,5
1) (1,75; 5,75)
2) (3; 3)
3) у = 7х
Объяснение:
Точкой пересечения графиков функций будет точка, (х,у), подходящая для обоих равенств.
То есть строго говоря это такая точка (х, у), где х и у являются решением системы уравнений:
И искомые координаты точки будут (1,75; 5,75)
Можно решить проще:
Чтобы найти абсциссу (х) точки пересечения, приравняем
А ординату (у) точки пересечения найдем, подставив найденное значение (х) в любое из уравнений:
Например, в y = x + 4
И искомые координаты точки будут (1,75; 5,75)
ответ (1,75; 5,75)
2.
Найти точку графика, абсцисса которой равна ординате
То есть требуется найти такую точку (х,у) графика,
у которой х = у.
Строго говоря, тут также требуется решение системы:
Это как бы пересечение двух графиков:
у = 2х - 3 и у = х
Но можно и проще.
Найти точку графика, абсцисса которой равна ординате, т.е. у = х.
Значит, подставляем х вместо у в уравнение;
А так как по условию у = х, то
И искомые координаты точки будут (3; 3)
ответ: (3; 3)
3.
График линейной функции проходит через начало координат (т.е. точку О(0; 0)) и точку А(3; 21)
Следовательно, уравнение имеет форму
y = kx + b
причем т.к. график проходит через (0;0), следовательно
у(0) = 0 => 0 = k•0 + b <=> b = 0
а значит уравнение прямой имеет форму:
y = kx + 0 <=> y = kx
И т.к. график проходит через А(3; 21), следовательно
у(3) = 21 <=> k•3 = 21 <=> k = 21:3
k = 7
Итак, получили, что b = 0; k = 7
А значит уравнение примет вид:
у = 7х
ответ: у = 7х
-b/(2a)=3 - абсцисса вершины
9a+3b+c=1 - подставили координаты точки А(3;1)
a+b+c=3 - подставили координаты точки К(1;3).
из первого уравнения системы имеем b=-6a. Подставим это выражение во второе и третье уравнения системы:
9a-18a+c=1 -9a+c=1
a-6a+c=3 -5a+c=3 Вычтем из второго уравнения первое и получим: 4а=2; а=0,5. с=3+5а=3+5*0,5=5,5. b=-6a=-6*0,5=-3.
Уравнение параболы имеет вид: y=0,5х^2-3x+5,5