1) а) sin 72°=sin(90°-18°)=cos18°; т.к. по формуле приведения
sin(90°-α)=cosα
б) cos 71°=cos(90°-19°)=sin19°;
т.к. по формуле приведения
cos(90°-α)=sinα
2) a) sin 175°=sin (180°-5°)= sin5°; т.к. по формуле приведения
sin(180°-α)=sinα
б) cos 155°=cos(180°-25°)=-cos25°; т.к. по формуле приведения
cos(180°-α)=-cosα
3) a) sin 285°=sin (270°+15°)=-cos15°; т.к. по формуле приведения
sin(270°+α)=-cosα
б) cos 273=cos (270°+3°)=sin3°; т.к. по формуле приведения
cos(270°+α)=sinα
4) a) sin (-355°)=-sin355°=-sin(360°-5°)=sin5°; т.к. по формуле приведения
sin(360°-α)=-sinα, и функция синуса есть нечетная функция.
б) cos (-451°)=cos451°=cos(360+91°)=cos91°=cos(90°+1°)=-sin1° ;
т.к. по формуле приведения
cos(90°+α)=-sinα и функция косинуса есть четная функция.
в) tg65°= tg(90°-35°)=сtg35°; т.к. по формуле приведения
tg(90°-α)=ctgα
в) tg 102°= tg(90°+12°)=-сtg12°, т.к. по формуле приведения
tg(90°+α)=-ctgα
в) tg 250°=tg(270°-20°)=ctg20°;
т.к. по формуле приведения
tg(170°-α)=ctgα
в) tg (-317°)=-tg (360°-43°)=tg43°, т.к. по формуле приведения
tg(360°-α)=-tgα, и функция тангенса есть нечетная.
Дополнение. Функция наз. четной, если область ее определения симметрична относительно нуля и у(-х)=у(х); функция наз. нечетной, если область ее определения симметрична относительно нуля и
у(-х)=-у(х);
формулы приведения позволяют приводить функции тупого угла к функциям острого угла.
α∈(0°45°)
1) а) sin 72°=sin(90°-18°)=cos18°; т.к. по формуле приведения
sin(90°-α)=cosα
б) cos 71°=cos(90°-19°)=sin19°;
т.к. по формуле приведения
cos(90°-α)=sinα
2) a) sin 175°=sin (180°-5°)= sin5°; т.к. по формуле приведения
sin(180°-α)=sinα
б) cos 155°=cos(180°-25°)=-cos25°; т.к. по формуле приведения
cos(180°-α)=-cosα
3) a) sin 285°=sin (270°+15°)=-cos15°; т.к. по формуле приведения
sin(270°+α)=-cosα
б) cos 273=cos (270°+3°)=sin3°; т.к. по формуле приведения
cos(270°+α)=sinα
4) a) sin (-355°)=-sin355°=-sin(360°-5°)=sin5°; т.к. по формуле приведения
sin(360°-α)=-sinα, и функция синуса есть нечетная функция.
б) cos (-451°)=cos451°=cos(360+91°)=cos91°=cos(90°+1°)=-sin1° ;
т.к. по формуле приведения
cos(90°+α)=-sinα и функция косинуса есть четная функция.
в) tg65°= tg(90°-35°)=сtg35°; т.к. по формуле приведения
tg(90°-α)=ctgα
в) tg 102°= tg(90°+12°)=-сtg12°, т.к. по формуле приведения
tg(90°+α)=-ctgα
в) tg 250°=tg(270°-20°)=ctg20°;
т.к. по формуле приведения
tg(170°-α)=ctgα
в) tg (-317°)=-tg (360°-43°)=tg43°, т.к. по формуле приведения
tg(360°-α)=-tgα, и функция тангенса есть нечетная.
Дополнение. Функция наз. четной, если область ее определения симметрична относительно нуля и у(-х)=у(х); функция наз. нечетной, если область ее определения симметрична относительно нуля и
у(-х)=-у(х);
формулы приведения позволяют приводить функции тупого угла к функциям острого угла.
{ 1.5x + 4 > 3x + 7
{ 3x + 23 ≥ 8
{1.5x - 3x > 7 - 4
{ 3x ≥ 8 - 23
{ - 1.5x > 3 |×(-1)
{ 3x ≥ - 15
{ 1.5x < 3
{ x ≥ - 5
{ x < 2
{ x ≥ - 5
Точки на числовой оси в приложении .
ответ : - 5 ≤ x < 2
x∈ [ - 5 ; 2 )
2)
{ 0,6 - 3х > x - 11.4
{ 2x ≤ x +5
{ - 3x - x > - 11.4 - 0.6
{ 2x - x ≤ 5
{ - 4x > - 12 |× (-1)
{ x≤ 5
{ 4x < 12
{ x ≤ 5
{ x < 3
{ x ≤ 5
Точки на числовой оси в приложении.
ответ : -∞ < х < 3
х ∈ ( - ∞ ; 3 )