Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
В этом задании вам необходимо определить значение выражений при заданных значениях. Получается следующее решение.
(5p + q) : (р – 4q), если:
а) При p = –2,18; q = 10,9;
(5 * (-2,18)) + 10,9) : (-2,18 - 4 * 10,9) = (-10,9 + 10,9) : (-2,18 - 43,6) = 0 : 45,78 = 0.
В результате получается ответ равный 0.
б) При p = 2; q = 3;
(5 * 2 + 3) : (2 - 4 * 3) = (10 + 3) : (2 - 12) = 13 : (-10) = -1,3.
В результате получается ответ равный -1,3.
в) При р = 0,5; q = 1.
(5 * 0,5 + 1) : (0,5 - 4 * 1) = (2,5 + 1) : (0,5 - 4) = 3,5 : (-3,5) = -1.
Значение данного выражения равно -1.
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.