Запишите с формулы(у=ах²+вх+с) скорость течения реки в зависимости от глубины реки и постройте график зависимости. Если на глубине реки в 4 метра наибольшая скорость равна 4 м/с и на глубине реки в 6 метров скорость течения реки равна 0 м/с.
Для того, чтобы найти такое неравенство, найдём дискриминант для, пока что, первых 2-х неравенств:
D1/2 = 6² - 12 * 4 = 36 - 48 = -12. Так как дискриминант получился меньше нуля, то 1 уравнение не имеет пересечения с осью ОХ, а коэффициент при х² = 1 > 0, следовательно график функции находиться выше оси ОХ, а значит имеет решение при всех значениях х, что не скажешь про 2-е неравенство. График функции (2-го неравенства) находиться выше ОХ, а необходимо найти все значения х < 0, но их нет, поэтому неравенство не имеет решений. Значит ответом является 2-е неравенство, и так как решение мы нашли, проверять оставшееся неравенства не будем.
Для того, чтобы найти такое неравенство, найдём дискриминант для, пока что, первых 2-х неравенств:
D1/2 = 6² - 12 * 4 = 36 - 48 = -12. Так как дискриминант получился меньше нуля, то 1 уравнение не имеет пересечения с осью ОХ, а коэффициент при х² = 1 > 0, следовательно график функции находиться выше оси ОХ, а значит имеет решение при всех значениях х, что не скажешь про 2-е неравенство. График функции (2-го неравенства) находиться выше ОХ, а необходимо найти все значения х < 0, но их нет, поэтому неравенство не имеет решений. Значит ответом является 2-е неравенство, и так как решение мы нашли, проверять оставшееся неравенства не будем.
ответ: 2.