Введем единицу измерения производительности—1 человеко-день. То есть это такое количество работы, которое выполняет 1 человек за 1 день. Раз домики одинаковые, то на их постройку уходит одно и то же число человеко-дней.
6 человек · 6 дней = 36 человекодней затрачено первой бригадой на постройку домика, когда она работала в старом составе;
10 человек · 6 дней = 60 человекодней затрачено второй бригадой на постройку домика, когда она работала в старом составе;
6+3=9 человек — новый состав первой бригады;
10–3=7 человек — новый состав второй бригады;
x дней работали обе бригады в новом составе;
9x человекодней затрачено первой бригадой на постройку домика, когда она работала в новом составе;
7x человекодней затрачено второй бригадой на постройку домика, когда она работала в новом составе;
36+9x человекодней затрачено первой бригадой на постройку домика;
60+7x человекодней затрачено второй бригадой на постройку домика.
Зная, что домики одинаковые, составим и решим уравнение:
Рассмотрим три варианта: 1) Если (a-1)=0 - то квадратного уравнения не будет, получится: y = 2x-2 - это прямая, функция принимает значения от -бесконечности до +бесконечности. Этот вариант не подходит (не является решением). 2) Если (a-1)>=0, a>=1 Парабола ветвями вверх, и единственный вариант, чтобы минимум функции был в точке 1 - это вершина параболы. x0= 1/(1-a) y0=1, (a-1)/(1-a)^2 - 2/(a-1) - 2 = 1, отсюда а=2/3 < 1 - не является решением в данном случае. 3) Если (a-1)<0, a<1 Парабола ветвями вниз - значения функции будут от -бесконечности до вершины - не подходит по условию задачи.
ответ: нет решения P.S. Не совсем понятен интервал: от +1 или -1? Я делала для интервала от +1
6 человек · 6 дней = 36 человекодней затрачено первой бригадой на постройку домика, когда она работала в старом составе;
10 человек · 6 дней = 60 человекодней затрачено второй бригадой на постройку домика, когда она работала в старом составе;
6+3=9 человек — новый состав первой бригады;
10–3=7 человек — новый состав второй бригады;
x дней работали обе бригады в новом составе;
9x человекодней затрачено первой бригадой на постройку домика, когда она работала в новом составе;
7x человекодней затрачено второй бригадой на постройку домика, когда она работала в новом составе;
36+9x человекодней затрачено первой бригадой на постройку домика;
60+7x человекодней затрачено второй бригадой на постройку домика.
Зная, что домики одинаковые, составим и решим уравнение:
36+9x=60+7x;
2x=24;
x=12 дней.
ответ: 12 дней.
1) Если (a-1)=0 - то квадратного уравнения не будет, получится:
y = 2x-2 - это прямая, функция принимает значения от -бесконечности до +бесконечности. Этот вариант не подходит (не является решением).
2) Если (a-1)>=0, a>=1
Парабола ветвями вверх, и единственный вариант, чтобы минимум функции был в точке 1 - это вершина параболы.
x0= 1/(1-a)
y0=1, (a-1)/(1-a)^2 - 2/(a-1) - 2 = 1, отсюда а=2/3 < 1 - не является решением в данном случае.
3) Если (a-1)<0, a<1
Парабола ветвями вниз - значения функции будут от -бесконечности до вершины - не подходит по условию задачи.
ответ: нет решения
P.S. Не совсем понятен интервал: от +1 или -1? Я делала для интервала от +1