Запиши утверждение на математическом языке: «Для того чтобы умножить число 7 на разность двух чисел s и t, можно умножить это число на уменьшаемое и на вычитаемое, а затем из первого произведения вычесть второе».
ответ (в ответе на первом месте записывай число 7, числа, выраженные буквами, записывай в алфавитном порядке):
Всего 60 трехзначных чисел
На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.
5·4·3=60
а) кратны трем те числа, у которых сумма цифр кратна трем
Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:
123; 132;321;312;231;213
Возможностей 4:
1+2+3=6 кратно 3
2+3+4= 9 кратно 3
3+4+5=12 кратно 3
1+3+5=9 кратно 3
В каждой возможности 6 чисел. Всего 24 числа.
б) Кратны четырем те трехзначные числа, у которых две последние цифры кратны 4. Возможны варианты:
*12
*24
*32
*52
На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел
в) кратных 5:
12:
на последнем месте обязательно располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -
Объяснение:
а) 25²⁶-25²⁴=25²⁴(25²-25⁰)=25²⁴(625-1)=25²⁴·624
Признаки делимости на 12:
1) 6+2+4=12 делится на 3, следовательно, 624 также делится на 3;
2) 2+4÷2=4 - чётное число. Значит, 624 делится на 4.
Отсюда следует, что 624 делится на 12.
Если один из множителей делится нацело на число а, то произведение делится нацело на число a.
Следовательно, произведение (25²⁴·624) делится на 12.
б) 16⁴+8⁵-4⁷=(2⁴)⁴+(2³)⁵-(2²)⁷=2¹⁶+2¹⁵-2¹⁴=2¹⁴(2²+2¹-2⁰)=2¹⁴(4+2-1)=2¹⁴·5=2¹³·2·5=2¹³·10
Если один из множителей делится нацело на число а, то произведение делится нацело на число a.
Следовательно, произведение (2¹³·10) делится на 10.