1. Произведение чисел, переменных и их степеней называется одночленом. Пример: 3⋅5=(3⋅5)⋅(⋅)=152 2. Если в одночлене первым записан числовой множитель, а произведение одинаковых степеней переменных записано в виде одной степени, то такой вид одночлена называют стандартным видом. Пример: 10⋅12=5⋅2⋅123=53 . 3. Числовой множитель одночлена, записанного в стандартном виде, называется коэффициентом одночлена. Степенью одночлена называется сумма показателей степеней всех переменных. Пример: Коэффициент одночлена 53 равен 5, 6 — одночлен первой степени (переменная в первой степени); 4. Чтобы умножить одночлен на одночлен, нужно перемножить их численные коэффициенты, показатели степеней одинаковых переменных сложить, а переменные, входящие в состав только одного из множителей, перенести в произведение без каких-либо изменений. 5. Многочленом называется сумма одночленов. Пример: 32 −7 . 6. Одночлены, у которых произведения переменных равны, хотя их порядок может отличаться, называются подобными одночленами. Пример: 3х^2у 7. Многочлены, содержащие в своей записи подобные члены, с тождественных преобразований могут быть приведены к виду, в котором не будет подобных членов. Такое преобразование многочлена называется приведением подобных членов. 8. Степенью многочлена от нескольких переменных называют наивысшую степень входящих в него одночленов. 9. Многочлен стандартного вида – это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов. 10, 11. Для осуществления действия сложения или вычитания многочленов, необходимо:
записать сумму или разность многочленов в зависимости от поставленной задачи; в записанном выражении произвести раскрытие скобок, результатом чего станет многочлен; привести полученный во втором шаге многочлен в стандартный вид. 12. Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить. Пример: a ⋅ b + c = a ⋅ b + a ⋅ c. 13. Разложение многочлена на множители – тождественное преобразование, превращающее сумму в произведение нескольких множителей. 14. Пример вынесения общего множителя за скобки: +=(+). Пример группировки: 3−52−3+152
Группируем члены парами, получаем: (3−52)−(3−152)
2(−5)−3(−5)
(2−3)(−5) 15. Чтобы умножить многочлен на многочлен, нужно: каждый одночлен первого многочлена умножить на каждый одночлен второго многочлена; полученные произведения сложить (то есть записать друг за другом с учетом знаков полученных при умножении). Пример: (a − b)(−a − 2) = a · (−a) − 2a + ab + 2b = −a2 − 2a + ab + 2b
2. Если в одночлене первым записан числовой множитель, а произведение одинаковых степеней переменных записано в виде одной степени, то такой вид одночлена называют стандартным видом. Пример: 10⋅12=5⋅2⋅123=53 .
3. Числовой множитель одночлена, записанного в стандартном виде, называется коэффициентом одночлена. Степенью одночлена называется сумма показателей степеней всех переменных. Пример: Коэффициент одночлена 53 равен 5, 6 — одночлен первой степени (переменная в первой степени);
4. Чтобы умножить одночлен на одночлен, нужно перемножить их численные коэффициенты, показатели степеней одинаковых переменных сложить, а переменные, входящие в состав только одного из множителей, перенести в произведение без каких-либо изменений.
5. Многочленом называется сумма одночленов. Пример: 32 −7 .
6. Одночлены, у которых произведения переменных равны, хотя их порядок может отличаться, называются подобными одночленами. Пример: 3х^2у
7. Многочлены, содержащие в своей записи подобные члены, с тождественных преобразований могут быть приведены к виду, в котором не будет подобных членов. Такое преобразование многочлена называется приведением подобных членов.
8. Степенью многочлена от нескольких переменных называют наивысшую степень входящих в него одночленов.
9. Многочлен стандартного вида – это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов.
10, 11. Для осуществления действия сложения или вычитания многочленов, необходимо:
записать сумму или разность многочленов в зависимости от поставленной задачи;
в записанном выражении произвести раскрытие скобок, результатом чего станет многочлен;
привести полученный во втором шаге многочлен в стандартный вид.
12. Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить. Пример: a ⋅ b + c = a ⋅ b + a ⋅ c.
13. Разложение многочлена на множители – тождественное преобразование, превращающее сумму в произведение нескольких множителей.
14. Пример вынесения общего множителя за скобки: +=(+). Пример группировки: 3−52−3+152
Группируем члены парами, получаем:
(3−52)−(3−152)
2(−5)−3(−5)
(2−3)(−5)
15. Чтобы умножить многочлен на многочлен, нужно:
каждый одночлен первого многочлена умножить на каждый одночлен второго многочлена;
полученные произведения сложить (то есть записать друг за другом с учетом знаков полученных при умножении).
Пример: (a − b)(−a − 2) = a · (−a) − 2a + ab + 2b = −a2 − 2a + ab + 2b
Источник: https://math-prosto.ru
1. найдем производную. y'=6x²-6x-72=6(x²-x-12)
2. найдем стационарные точки. 6(x²-x-12)=0, по Виету х=4; х=-3.
3. Выясним, как ведет себя производная при переходе через эти точки. решив неравенство, например, y'>0, методом интервалов.
-34
+ - +
точка х=-3- точка максимума, максимум равен у(-3)=2*(-3)³ - 3*(-3)²- 72*(-3) + 5=-54-27+216+5=221-81=140
точка х=4- точка минимума, минимум функции равен
у(4)=2*4³ - 3*4²- 72*4 + 5=128-48-228+5=-143
Интервалы монотонности - убывает функция при х∈[-3;4]
(-∞;-3] и при х∈[4;+∞)