Найдём уравнение прямой, проходящей через точки (-3; 0) и (-1; 3).
(х + 3)/(-1 + 3) = (у -0)/(3 - 0)
3(х + 3) = 2у
у = 1,5х + 4,5
Найдём точки пересечения этой прямой с осью Ох
у = 0;
1,5х + 4,5 = 0
х = -3
парабола у = 3х касается оси Ох в точке х = 0.
Найдём точки пересечения параболы у = 3х² и прямой у = 1,5х + 4,5
3х² = 1,5х + 4,5
3х² - 1,5х - 4,5 = 0
2х² - х - 3 = 0
D = 1 + 24 = 25
x1 = (1 - 5)/4 = -1
x2 = (1 + 5)/4 = 1.5
Изобразим графики, заданные уравнениями параболы и прямой.
Смотри рисунок на прикреплённом файле.
Очевидно, что фигура, заключённая между параболой, наклонной прямой и осью Ох, представляет собой криволинейный треугольник. Причем левая половина этого треугольника ограничена наклонной прямой и осью Ох, а правая половина - параболой и осью Ох. Соответственно, и интегралов будет два
При увеличении аргумента от до (верхняя полуплоскость числовой окружности) косинус убывает от до . При увеличении аргумента от до (нижняя полуплоскость числовой окружности) косинус возрастает от до
1. Каждый из углов и на числовой окружности лежит в верхней полуплоскости. Так как , то
2, Каждый из углов и на числовой окружности лежит в нижней полуплоскости. Сравним:
Значит,
3. Углы и расположены в 4 и 1 четвертях соответственно. Преобразуем выражения так, чтобы углы располагались в одной полуплоскости:
Теперь оба угла расположены в верней полуплоскости, причем . Значит, , следовательно
4. Преобразуем синус к косинусу:
Углы и расположены в 3 и 2 четвертях, поэтому преобразуем первое выражение:
Теперь оба угла лежат в верхней полуплоскости, причем . Тогда, или
S = 4
Объяснение:
Найдём уравнение прямой, проходящей через точки (-3; 0) и (-1; 3).
(х + 3)/(-1 + 3) = (у -0)/(3 - 0)
3(х + 3) = 2у
у = 1,5х + 4,5
Найдём точки пересечения этой прямой с осью Ох
у = 0;
1,5х + 4,5 = 0
х = -3
парабола у = 3х касается оси Ох в точке х = 0.
Найдём точки пересечения параболы у = 3х² и прямой у = 1,5х + 4,5
3х² = 1,5х + 4,5
3х² - 1,5х - 4,5 = 0
2х² - х - 3 = 0
D = 1 + 24 = 25
x1 = (1 - 5)/4 = -1
x2 = (1 + 5)/4 = 1.5
Изобразим графики, заданные уравнениями параболы и прямой.
Смотри рисунок на прикреплённом файле.
Очевидно, что фигура, заключённая между параболой, наклонной прямой и осью Ох, представляет собой криволинейный треугольник. Причем левая половина этого треугольника ограничена наклонной прямой и осью Ох, а правая половина - параболой и осью Ох. Соответственно, и интегралов будет два
При увеличении аргумента от до (нижняя полуплоскость числовой окружности) косинус возрастает от до
1.
Каждый из углов и на числовой окружности лежит в верхней полуплоскости. Так как , то
2,
Каждый из углов и на числовой окружности лежит в нижней полуплоскости. Сравним:
Значит,
3.
Углы и расположены в 4 и 1 четвертях соответственно. Преобразуем выражения так, чтобы углы располагались в одной полуплоскости:
Теперь оба угла расположены в верней полуплоскости, причем . Значит, , следовательно
4.
Преобразуем синус к косинусу:
Углы и расположены в 3 и 2 четвертях, поэтому преобразуем первое выражение:
Теперь оба угла лежат в верхней полуплоскости, причем . Тогда, или