Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1. ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
4sin²x + sin2x = 3 ⇔ 4sin²x + 2sinx*cosx = 3(sin²x+cos²x) = 0 ⇔
sin²x + 2sinx*cosx - 3cos²x =0 ⇔ || : cos²x ≠ 0 ||
* * * однородное уравнение второго порядка Au²+Bu*v +Cv² * * *
tg²x + 2tgx - 3 =0 ( квадратное уравнение относительно tgx )
tgx₁ = 1 ; tgx₂ = - 3
x₁ = π/4 +πn , n ∈ ℤ ;
x₂ =arctg(-3) + πk ,k ∈ ℤ || arctg(-3) = -arctg(3) ||
ответ: π/4 +πn , n ∈ ℤ ; - arctg(3) + πk ,k ∈ ℤ .
4sin²x + sin2x = 3 ⇔ 4(1 - cos2x) /2 + sin2x = 3⇔ 1sin2x -2cos2x = 1 ⇔
√5 ( (1 /√5)*sin2x - (2/√5) *cos2x ) = 1 * * * √ (1²+2²) = √5 * * *
* * * 1 /√5 = cosφ ; 2/√5 =sinφ ; 2 = tgφ * * *
√5( sin2x*cosφ - cos2x *sinφ ) = 1 ⇔ √5( sin(2x - φ) ) = 1
sin(2x - φ) = 1/√5 ⇒ 2x - φ = (-1)ⁿarcsin( 1/√5) + πn , n∈ ℤ
x = 0,5φ + 0,5(-1)ⁿarcsin( 1/√5) + πn , n∈ ℤ
* * * φ = arccos(1 /√5) ; φ= arcsin(2/√5) ; φ= arctg2 * * *
x1+x4=9
x1+x6=8
x2+x5=8
x2+x3=9
x3+x6=6
x4+x7=4
x5+x7=4
Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1.
ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.