Загруженность автомобильных дорог измеряется в балах по десятибалльной шкале для каждого значного Маршрута в городе определяется эталонное время за которое его можно проехать по свободной дороге не нарушая правил дорожного движения сравниваем время проезда по тем же улицам пить и кушать разные ситуации и эталонное время компьютер вычисляет загруженность дороги в балах загруженность автомобильных дорог в 1- Означает что дороги практически свободны а если загруженность выше семи то пользоваться автомобилем нецелесообразно на графике показана средняя загруженность дорог в Москве в некоторый будний день. 8 класс
) Квадратичная функция y=x^2 ; график функции парабола, ветви направлены вверх, с центром в О (0;0), проходит через точки: (1;1) и (-1;1), (2; 4) и (-2;4), (0; 1.5) и (-2; 1.5)
Линейная функция y=2x+3 ; график функции прямая, проходящая через точки (0;3) и (2;7)
По заданным точкам строим 2 графика.
2) Для нахождения точек пересечения приравняем y=y и найдем точки на абциссе (х):
2x+3=x^2;
x^2-2x-3=0
а=1
b=-2
c=-3
D= 4+12 = 16, х>0, х1,х2, =4
х1= (-b+4)/2a= 3
х2= (-b-4)/2a= -1
Подставим найденные x в уравнение y=x^2 и найдем ординату (у), y1=9; y2=1. Так точки пересечения двух графиков: (3;9) и (-1; 1).
a=4>0 ⇒ ветви параболы идут вверх. А значит интервал следующий +;-;+
Решаем данное неравенство как обычное квадратное уравнение
4m²-11m-1=0
D=b²-4c=(-11)²-4×4×7=9
x=(-b±√D)/2a=(11±√9)÷8=7/4 и 1
С учетом интервала +;-;+ и знака больше, мы получаем следующий ответ неравенства
х∈(-∞;1)∪(7/4;∞)
Ищем наименьшее натуральное число удовлетворяющее найденное множество и это число 2. ( Число 1 не может быть ответом, так как он не входит в указаное множество)
) Квадратичная функция y=x^2 ; график функции парабола, ветви направлены вверх, с центром в О (0;0), проходит через точки: (1;1) и (-1;1), (2; 4) и (-2;4), (0; 1.5) и (-2; 1.5)
Линейная функция y=2x+3 ; график функции прямая, проходящая через точки (0;3) и (2;7)
По заданным точкам строим 2 графика.
2) Для нахождения точек пересечения приравняем y=y и найдем точки на абциссе (х):
2x+3=x^2;
x^2-2x-3=0
а=1
b=-2
c=-3
D= 4+12 = 16, х>0, х1,х2, =4
х1= (-b+4)/2a= 3
х2= (-b-4)/2a= -1
Подставим найденные x в уравнение y=x^2 и найдем ординату (у), y1=9; y2=1. Так точки пересечения двух графиков: (3;9) и (-1; 1).
Запишем ответ x= -1; 3
Объяснение:
вот так надеюсь то что надо
Из этого составим неравенство
4m²-8m+3>3m-4
4m²-8m-3m+3>-4
4m²-11m+3>-4
4m²-11m+3+4>0
4m²-11m+7>0
Получаем неравенство типа ax²+bx+c>0
a=4>0 ⇒ ветви параболы идут вверх. А значит интервал следующий +;-;+
Решаем данное неравенство как обычное квадратное уравнение
4m²-11m-1=0
D=b²-4c=(-11)²-4×4×7=9
x=(-b±√D)/2a=(11±√9)÷8=7/4 и 1
С учетом интервала +;-;+ и знака больше, мы получаем следующий ответ неравенства
х∈(-∞;1)∪(7/4;∞)
Ищем наименьшее натуральное число удовлетворяющее найденное множество и это число 2. ( Число 1 не может быть ответом, так как он не входит в указаное множество)
ответ:2