1. Всего пятизначных чисел: 9*10*10*10*10 = 90000. Количество пятизначных чисел, в которых первая цифра - пятерка, равно: 4*9*9*9 = 2916 (Одна из оставшихся цифр - пятерка, поэтому можно варьировать только 3 разряда, причем цифрами от 0 до 4 и от 6 до 9 - отсюда три множителя 9. Пятерка может быть любым из четырех оставшихся разрядов - отсюда множитель 4). Количество пятизначных чисел, в которых первая цифра - не пятерка, равно: 8*6*9*9 = 3888 (Первую цифру можно выбрать это не 0 и не 5. Из оставшихся четырех цифр можно варьировать 2 разряда, причем цифрами от 0 до 4 и от 6 до 9 - отсюда два множителя 9. Две пятерки могут располагаться на четырех местах отсюда множитель 6). Искомая вероятность равна: (2916+3888)/90000 = 0,0756.
2. Всего шестизначных чисел: 9*10*10*10*10*10 = 900000. Количество шестизначных чисел, у которых первая цифра - семерка, равно: 10*9*9*9 = 7290 (Две оставшихся цифры - семерки, поэтому варьировать можно только три разряда, причем цифрами от 0 до 6 и от 8 до 9 - отсюда три множителя 9. Две семерки могут располагаться на пяти местах отсюда множитель 10). Количество шестизначных чисел, у которых первая цифра - не семерка, равно: 8*10*9*9 = 6480 (Первую цифру можно выбрать это не 0 и не 7. Из оставшихся пяти разрядов варьировать можно 2, причем цифрами от 0 до 6 и от 8 до 9 - отсюда два множителя 9. Две семерки могут располагаться на пяти местах отсюда множитель 10). Искомая вероятность равна: (7290+6480)/900000 = 0,0153.
Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
9*10*10*10*10 = 90000.
Количество пятизначных чисел, в которых первая цифра - пятерка, равно:
4*9*9*9 = 2916 (Одна из оставшихся цифр - пятерка, поэтому можно варьировать только 3 разряда, причем цифрами от 0 до 4 и от 6 до 9 - отсюда три множителя 9. Пятерка может быть любым из четырех оставшихся разрядов - отсюда множитель 4).
Количество пятизначных чисел, в которых первая цифра - не пятерка, равно:
8*6*9*9 = 3888 (Первую цифру можно выбрать это не 0 и не 5. Из оставшихся четырех цифр можно варьировать 2 разряда, причем цифрами от 0 до 4 и от 6 до 9 - отсюда два множителя 9. Две пятерки могут располагаться на четырех местах отсюда множитель 6).
Искомая вероятность равна:
(2916+3888)/90000 = 0,0756.
2. Всего шестизначных чисел:
9*10*10*10*10*10 = 900000.
Количество шестизначных чисел, у которых первая цифра - семерка, равно:
10*9*9*9 = 7290 (Две оставшихся цифры - семерки, поэтому варьировать можно только три разряда, причем цифрами от 0 до 6 и от 8 до 9 - отсюда три множителя 9. Две семерки могут располагаться на пяти местах отсюда множитель 10).
Количество шестизначных чисел, у которых первая цифра - не семерка, равно:
8*10*9*9 = 6480 (Первую цифру можно выбрать это не 0 и не 7. Из оставшихся пяти разрядов варьировать можно 2, причем цифрами от 0 до 6 и от 8 до 9 - отсюда два множителя 9. Две семерки могут располагаться на пяти местах отсюда множитель 10).
Искомая вероятность равна:
(7290+6480)/900000 = 0,0153.
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.