y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
Это двойное нестрогое неравенство.
1≤х + 3/4≤4 I -3/4
1 - 3/4 ≤х + 3/4 - 3/4 ≤4 - 3/4
1/4 ≤ х ≤3 1/4
Целые решения : 1; 2; 3.
Из них простые числа : 2 и 3.
При условии: 1≤ (х+3)/4 ≤4 I *4
1 * 4 ≤ (х+3)/4 * 4 ≤ 4 * 4
4 ≤ х+3 ≤ 16 I -3
4-3 ≤ х+3-3 ≤ 16-3
1 ≤ х ≤ 13
х∈[1; 13]
В этом промежутке простые числа: 2; 3; 5; 7; 11; 13.
ответ: 6 простых чисел в промежутке.
Ставьте скобки)).
y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Подробнее - на -
Объяснение: